问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

因式分解的方法与技巧

发布网友 发布时间:2022-04-25 17:09

我来回答

5个回答

懂视网 时间:2022-07-27 20:04

1、符号变换

有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数。

【例】(m+n)(x-y)+(m-n)(y-x)

技巧:y-x= -(x-y)

原式=(m+n)(x-y)-(m-n)(x-y)

=(x-y)(m+n-m+n)

=2n(x-y)

小结:符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。

2、系数变换

有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

【例】分解因式4x2-12xy+9y2

原式=(2x)2-2(2x)(3y)+(3y)2

=(2x-3y)2

小结:系数变化常用于可用公式,但用公式的条件不太清晰的情况下。

3、指数变换

有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

【例】分解因式x4-y4

技巧:把x4看成(x2)2,把y4看成(y2)2,然后用平方差公式。

原式=(x2)2-(y2)2

=(x2+y2)(x2-y2)

=(x2+y2)(x+y)(x-y)

小结:指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。

懂视网 时间:2022-11-21 16:26

1、提取公因式法:最基本也是最简单地方法,将多项式中每个单项式都含有的相同的字母提取出来,变成相乘的形式。

2、平方差法:如果两项相减且每一项都是平方项,那么就可以通过平方差公式进行分解。

3、完全平方法:如果多项式含有三项,且满足完全平方的形式,就可以通过完全平方公式进行分解了。

4、十字相乘法:最经典的方法,也是最常用的,分解其中的两项,通过十字相乘再相加,如果和第三项相等,就可以分解因式了。

5、分组分解法:针对项数比较多的情况,相对来说比较复杂,先根据式子的特点进行分组,再讲不同组进行合并,需要有足够的观察力。

热心网友 时间:2023-08-21 11:11

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)【a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)】

a^m+b^m=(a+b)【a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)】(m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=【(1+y)+x^2(1-y)】^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=【(1+y)+x^2(1-y)】^2-(2x)^2

=【(1+y)+x^2(1-y)+2x】·【(1+y)+x^2(1-y)-2x】

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=【(x+1)^2-y(x^2-1)】【(x-1)^2-y(x^2-1)】

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x 【2(x + )-(x+ )-6
令y=x+ , x 【2(x + )-(x+ )-6
= x 【2(y -2)-y-6】
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) 【a -a(b+c)+bc】
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

热心网友 时间:2023-08-21 11:12

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
⑵运用公式法
①平方差公式:.
a^2-b^2=(a+b)(a-b)
②完全平方公式:
a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3=
(a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3=
(a-b)(a^2+ab+b^2).
④完全立方公式:
a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)
⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
⑸十字相乘法
①x^2+(p
q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:
x^2+(p
q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m
时,那么
kx^2+mx+n=(ax
b)(cx
d)
a
\-----/b
ac=k
bd=n
c
/-----\d
ad+bc=m

多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

热心网友 时间:2023-08-21 11:12

1.提取公因式
这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
这个很实用,但用起来不容易.
在无法用以上的方法进行分解时,可以用下十字相乘法.
例子:x^2+5x+6
首先观察,有二次项,一次项和常数项,可以采用十字相乘法.
一次项系数为1.所以可以写成1*1
常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)
然后这样排列
1 - 2

1 - 3
(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)
然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)

我再写几个式子,楼主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)

其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.

顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)

这些方法一般在最高次为二次时适用!

热心网友 时间:2023-08-21 11:13

因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、
提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、
分解因式x
-2x
-x(2003淮安市中考题)
x
-2x
-x=x(x
-2x-1)
2、
应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a
+4ab+4b
(2003南通市中考题)
解:a
+4ab+4b
=(a+2b)
3、
分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m
+5n-mn-5m
解:m
+5n-mn-5m=
m
-5m
-mn+5n
=
(m
-5m
)+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、
十字相乘法
对于mx
+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x
-19x-6
分析:
1
-3
7
2
2-21=-19
解:7x
-19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x
+3x-40
解x
+3x-40=x
+3x+(
)
-(
)
-40
=(x+
)
-(
)
=(x+
+
)(x+
-
)
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x
-x
-6x
-x+2
解:2x
-x
-6x
-x+2=2(x
+1)-x(x
+1)-6x
=x
[2(x
+
)-(x+
)-6
令y=x+
,
x
[2(x
+
)-(x+
)-6
=
x
[2(y
-2)-y-6]
=
x
(2y
-y-10)
=x
(y+2)(2y-5)
=x
(x+
+2)(2x+
-5)
=
(x
+2x+1)
(2x
-5x+2)
=(x+1)
(2x-1)(x-2)
8、
求根法
令多项式f(x)=0,求出其根为x
,x
,x
,……x
,则多项式可因式分解为f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例8、分解因式2x
+7x
-2x
-13x+6
解:令f(x)=2x
+7x
-2x
-13x+6=0
通过综合除法可知,f(x)=0根为
,-3,-2,1
则2x
+7x
-2x
-13x+6=(2x-1)(x+3)(x+2)(x-1)
9、
图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x
,x
,x
,……x
,则多项式可因式分解为f(x)=
f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例9、因式分解x
+2x
-5x-6
解:令y=
x
+2x
-5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x
+2x
-5x-6=(x+1)(x+3)(x-2)
10、
主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a
(b-c)+b
(c-a)+c
(a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a
(b-c)+b
(c-a)+c
(a-b)=a
(b-c)-a(b
-c
)+(b
c-c
b)
=(b-c)
[a
-a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、
利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x
+9x
+23x+15
解:令x=2,则x
+9x
+23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x
+9x
+23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x
-x
-5x
-6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x
-x
-5x
-6x-4=(x
+ax+b)(x
+cx+d)
=
x
+(a+c)x
+(ac+b+d)x
+(ad+bc)x+bd
所以
解得
则x
-x
-5x
-6x-4
=(x
+x+1)(x
-2x-4)

热心网友 时间:2023-08-21 11:13

换元法因式分解方法及注意事项,请参考视频,录得不好,请多指教。

因式分解技巧 三点诀窍要牢记

1、符号变换 有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数。【例】(m+n)(x-y)+(m-n)(y-x)技巧:y-x= -(x-y)原式=(m+n)(x-y)-(m-n)(x-y)=(x-y)(m+n-m+n)=2n(x-y)小结:符号变化常用于可用公式或有公因式,但公因式或者用公式...

因式分解技巧

因式分解的方法和技巧:十字相乘法,双十字相乘法,提公因式法,因式定理法等。1、十字相乘法 具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)。特点:(1)二次项系数是1。(2)常数项是两个...

初二因式分解的方法与技巧

提取公因式法:分解因式:①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂。公因式是多项式的因式分解:15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5...

初中因式分解的方法与技巧

a²+4ab+4b² =(a+2b)²三,分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m2+5n-mn-5m m2+5n-m...

因式分解的技巧和方法

因式分解的技巧和方法如下:1、提公因式法:如果多项式的首项为负,应先提取负号;多项式的各项含有公因式,那么先提取这个公因式。公式法:如果多项式的首项为负,应先提取负号;多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉。2、十字相乘法:如果用上述方法不能分解,再尝试用分组...

因式分解的方法与技巧

因式分解的方法与技巧如下:1、提公因式法 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。2、公式法 如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解...

因式分解的方法与技巧

因式分解的方法与技巧如下:因式分解并不难,分解方法要记全,各项若有公因式,首先提取莫迟缓,各项若无公因式,套用公式来试验。如果是个二项式,平方差公式要领先,如果是个三项式,完全平方想周全,以上方法都不行,运用分组看一看,面对二次三项式,十字相乘求方便,能分解的再分解,不能分解是答案...

因式分解公式总结。

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -...

初二数学因式分解技巧

因式分解技巧如下:技巧一:提取公因式法。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。技巧二:公式法。技巧三:十字相乘法技巧。技巧四:双(长)十字相乘法。技巧五:主元法。:换元法。技巧六:分组分解法(添拆...

八年级上册因式分解方法与技巧

1、提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。 如果多项式的第一项...

因式分解必考50题 因式分解十二种方法公式 因式分解所有公式口诀 初中数学因式分解题150道 初三因式分解题40道及答案 高中数学因式分解的方法与技巧 因式分解二二分法最简单口诀 多项式因式分解的一般步骤 0次方吗
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
导购什么字 店面导购员是什么意思 HKEY_LOCAL_MACHINE\SOFTWARE\Macromedia\FlashPlayer\SafeVersions... 无法安装adobeflashplayer,说无法注册ACTIVEX的控件 无法注册flash player的activex怎么办 omniverse create 他总说无法注册Flash player的Active控件 然后什么访问以下链接。不要... excel如何用进度条的形式表示完成率 买了件速干衣,北面的,求大神看一下真假。 秦皇岛银谷全城热恋是不是要预定票啊 美国是哪一年独立的 怎么用因式分解法解方程 美国独立战争是从1775年到哪一年 分解因式的方法与技巧有哪些? 因式分解法的几个方法 美国的独立时间到底是1776年还是1783年? 美国独立是在哪一年?美国独立战争结束又是在哪一年? 美国独立战争时间是1775到1783年可是独立宣言1776年就签署了以后那在七年发生了什么 美国独立时间是1776还是1783? 1776年美国发生了什么? 美国独立是在哪一年 美国独立战 美国在哪一年独立? 美国独立战争哪一年 美国独立战争是哪一年? 美国独立第一站是在哪开始的? 关于动词的AABB型词语 有哪些又a又b的词语 又A又B的词语有什么 又a又b表示的四字词语 美国什么时候独立的. 绿豆沙用什么做的? 因式分解法解法,详细的过程 有一部电影讲的是1776年美国独立战争,叫什么名字?主演是谁?_百度知 ... 数学因式分解法解方程详细过程 美国宣布独立的标志性事件是什么?这一事件有何重大意义” 绿豆沙有啥作用? 因式分解法怎么解 1776年美国颁布的((独立宣言))的核心内容是什么 绿豆沙有什么其他用处, 美国独立多少年了? 用因式分解法解方程,请写过程 请问绿豆沙用什么才料更好味呢? 如何用因式分解法解一元二次方程 绿豆沙可以用来做什么好吃的? 用因式分解法解方程,思路清晰? 做绿豆沙要用到哪些器具? 因式分解的真正含义和方法 因式分解方法解一元二次方程 一元二次方程因式分解法的四种方法