发布网友 发布时间:2022-04-25 15:52
共3个回答
热心网友 时间:2023-10-14 20:22
我们的是大数据部热心网友 时间:2023-10-14 20:22
今天主要给大家说说大数据分析行业的就业方向,大数据分析怎么学,怎么入门。很多同学知道这个很火,但是不清楚这是干啥的。今天就先给大家讲大数据分析工程师。
当下,大数据分析方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。
对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。
一、ETL研发
企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架,以一种可靠、高效、可伸缩的方式进行数据处理。
随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。 主要涉及的技术有:Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架等。
三、可视化工具开发
可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
六、OLAP开发
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。
八、数据预测分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
十一、数据分析师
大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名大数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的大数据分析师,应该业务、管理、分析、工具、设计都不落下。
十二、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
大数据分析培训课程培养的是德智体美全面发展,具有良好的职业道德和创新精神,且掌握计算机技术、hadoop 、spark、storm开发、hive 数据库、Linux 操作系统等知识,具备分布式存储、分布式计算框架等技术,熟悉大数据处理和分析技术,面向大数据平台建设与服务企业的技术人才。
1、大数据开发方向; 所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师;
这三个方向精通任何方向之一者,均会前(钱)途无量。
就目前来看一般都是大企业对大数据挖掘分析的需求更多,所以学习大数据专业也是进大公司的捷径!
相关推荐:
《大数据分析师工作内容》、《转行大数据分析师后悔了》、《零基础学大数据分析现实吗》、《大数据分析要学什么》、《大数据分析方法》、《浅析大数据分析技术》、《大数据分析流程是什么》、《大数据分析十八般工具》、《大数据分析12大就业方向》
热心网友 时间:2023-10-14 20:23
舆情应对与大数据分析的工作经验,如果在企业中是市场总监的职位
根据IDC报告称,全球大数据技术和服务市场将在未来几年保持31.7%的年复合增长率,2016年市场总规模有望达到238亿美元。按此计算,大数据市场的增速将达到同期整个信息和通信技术领域增速的7倍。该市场正在迅速从各种既有市场和新市场中吸收技术和服务目前,IBM、微软、甲骨文、惠普、EMC等一些IT行业大佬都看好这一领域,纷纷投入人力、财力进行布局。
据IDC调查,过去的5年里,人类行为所产生的数据量增长了10倍,而在接下来10年中,这一增长将达到29倍。但80%的数据都是非结构数据,如何进行数据挖掘和利用,将成为大数据的价值点和难点。
中国计算机大会指导委员*、北京大学教授高文近日接受本刊采访表示,大数据不仅受产业界广泛关注,在技术领域也是热点。从技术角度来看,数据挖掘是大数据的价值所在,但目前数据挖掘仍存在很多问题,远没达到我们的预期。他谈到,阿里巴巴在数据挖掘上做了尝试,由电商的海量的交易数据衍生出阿里金融和物流,但这仅仅是在商业领域的价值,在社会变革仍未释放能量,未来大数据将会给社会带来更多改变。
关于大数据带来的价值也正引起业界和学术界广泛热议。近年来大数据不断地向社会各行各业渗透,为每一个领域带来变革性影响,并且正在成为各行业创新的原动力和助推器。这一时期,互联网社交互动技术的不断发展创新,人们越来越习惯于通过微博、微信、博客、论坛等社交平台去分享各种信息数据、表达诉求、建言献策,每天传播于这些平台上的数据量高达几百亿甚至几千亿条,这些数量巨大的社交数据构成了大数据的一个重要部分,这些数据对于*收集*动态、企业了解产品口碑、公司开发市场需求等发挥重要作用。
如今,虽然互联网已经成为收集*、了解*和企业工作成效的一个非常有效的途径。然而由于缺乏对互联网发贴等行为的必要监管措施,在舆情危机事件发生后,难以及时有效获取深层次、高质量的网络舆情信息,经常造成舆情危机事件处置工作的被动。于是,重视对互联网舆情的应对,建立起“监测、响应、总结、归档”的舆情应对体系是成为大数据时代政务工作的重要内容之一。
在此背景下,舆情监测及分析行业就是为适应大数据时代的舆情监测和服务而发展起来的。其主要专注于通过海量信息采集、智能语义分析、自然语言处理、数据挖掘,以及机器学习等技术,不间断地监控网站、论坛、博客、微博、平面媒体、微信等信息,及时、全面、准确地掌握各种信息和网络动向,从浩瀚的大数据宇宙中发掘事件苗头、归纳*观点倾向、掌握公众态度情绪、并结合历史相似和类似事件进行趋势预测和应对建议。
大数据在舆情监测上的应用价值
(一)大数据价值的核心:舆情预测
传统网络*引导工作的起点,是对已发生的网络舆情进行监测开始。然而这种方式的局限在于滞后性。大数据技术的应用,就是挖掘、分析网络舆情相关联的数据,将监测的目标时间点提前到敏感消息进行网络传播的初期,通过建立的模型,模拟仿真实际网络舆情演变过程,实现对网络突发舆情的预测。
(二)大数据价值的条件:舆情全面
大数据技术要预测舆情,首要条件是对各种关联的全面数据进行分析计算。传统数据时代,分析网民观点或舆情走势时, 只关注网民跟帖态度和情绪,忽视了网民心理的变化;只关注文本信息,而较少关注图像、视频、语音等内容;只观察*局部变化,忽视其他群体的*变化;只解读网民文字内容,而忽视复杂多变的社会关系网络。从舆情分析角度看,网民仅仅是信息海洋中的"孤独僵尸",犹如蚁群能够涌现高度智能,而单个蚂蚁如附热锅到处乱窜。
大数据时代,突破了传统数据时代片面化、单一化、静态化的思维,开始立体化、全局化、动态化研究网络舆情数据,将看似无关紧要的舆情数据纳入分析计算的范围。
(三)大数据价值的基础:舆情量化
大数据预测舆情的价值实现,必须建立在对已挖掘出的海量信息,利用数学模型进行科学计算分析的基础之上,其前提是各类相关数据的量化,即一切舆情信息皆可量化。但数据量化,不等同于简单的数字化,而是数据的可计算化。要在关注网民言论的同时,统计持此意见的人群数量;在解读网民言论文字内容的同时,计算网民互动的社会关系网络数量;对于网民情绪的变化,可通过量化的指标进行标识等。
(四)大数据价值的关键:舆情关联
数据背后是网络,网络背后是人,研究网络数据实际上是研究人组成的社会网络。大数据技术预测舆情的价值实现,最关键的技术就是对舆情间的关系进行关联,将不再仅仅关注传统意义上的因果关系,更多关注数据间的相关关系。按大数据思维,每一个数据都是一个节点,可无限次地与其他关联数据形成舆情链上的乘法效应--类似微博裂变传播路径,数据裂变式的关联状态蕴含着无限可能性。
大数据时代的舆情监测瓶颈
目前,各地舆情监测工作的主要手段仍以人工检索为主,尽管也使用了市面相对成熟的相关搜索软件进行辅助搜索,但搜索舆情的技术仍采用传统的二维搜索方式,即主题关键词和网络平台二维坐标,由舆情员对采集的信息进行二次加工成舆情产品。但搜索的舆情信息结果多为一级文本信息,对于深层次的多级舆情信息,如新闻、微博后的评论,网民的社会关系,网民针对某一事件评论反映出的情绪变化,以及网民煽动性、行动性的言论、暗示等数据无法深度挖掘,仍靠人工采集和分析判断。受制于舆情员的知识水平和价值判断的不同,极有可能导致有价值的舆情信息丢失,无法准确及时预测舆情走势,大大降低了舆情监测工作的效率、准确性,增加了有价值舆情信息发现的偶然性和投机性,为重大突发事件的舆情预测埋下隐患。
大数据背景下舆情监测的实现
对大数据的采集加工是整个舆情监测的基础,掌握数据抓取能力,通过“加工”实现数据的“增值”是舆情监测分析的必备技能。多瑞科舆情数据分析站系统因配置自己研发不同于爬虫技术的领先采集技术,用户不但可以监测各种正文信息,还可配置系统采集获取某些主题的最新回复内容,并获取其详细信息,如查看数,回复数,回复人,回复时间等。许多网站结构复杂或采用了Frame或采用了JavaScript动态写入内容或采用了Ajax技术实时自动刷新内容,这些都是普通爬虫技术很难处理或无法处理的。对于采集监测到的信息,系统可以自动加以分类,以负面舆情,与我相关,我的关注,专题跟踪等栏目分类呈现,让用户可以直奔主题,最快找到自己需要的信息。
对趋势的研判则是大数据时代舆情监测的目标。如今人们能够从浩如烟海的数据中挖掘信息、判断趋势、提高效益,但这远远不够,信息爆炸的时代要求人们不断增强关联舆情信息的分析和预测,把监测的重点从单纯的收集有效数据向对舆情的深入研判拓展。多瑞科舆情数据分析站系统对监测到的负面信息实施专题重点跟踪监测,重点首页进行定时截屏监测及特别页面证据保存。监测人员可以对系统自动识别分类后的信息进行再次挑选和分类,并可以基于工作需要轻松导出含有分析数据图表的舆情日报周报,减轻舆情数据分析,统计作图的繁杂度。对于某些敏感信息,系统还可通过短信和邮件及时通知用户,这样用户随时都可远程掌握重要舆情的动态。
大数据时代需要大采集,大数据时代需要大分析,这是数据爆炸背景下的数据处理与应用需求的体现,而传统的人工采集、人工监测显然难以满足大数据背景下对数据需求及应用的要求,多瑞科舆情数据分析站系统成功地实现了针对互联网海量舆情自动实时的监测、自动内容分析和自动报警的功能,有效地解决了传统的以人工方式对舆情监测的实施难题,加快了网络*的监管效率,有利于组织力量展开信息整理、分析、引导和应对工作,提高用户对网络突发舆情的公共事件应对能力,加强互联网“大数据”分析研判。