发布网友 发布时间:2023-06-27 01:00
共1个回答
热心网友 时间:2024-12-05 04:05
论文链接: https://arxiv.org/abs/1703.10593
1. 介绍
图像翻译是指将图片内容从一个域转换到另一个域。这类任务一般都需要两个域中具有相同内容的成对图片作为训练数据。比如在pix2pix中,要将白天的图片转换成夜晚的图片(图 1),那么就需要将同一个地方的白天和夜晚的图片作为一对训练数据对模型进行训练。但是这种成对的训练数据很难获得。
2. 方法
3. 效果
论文先将CycleGAN 跟当时的一些图像风格转换的方法在具有成对图像的数据集上进行比较。在这里,用完全监督的方法pix2pix作为上界。可以看到,CycleGAN 生成的图片对于除pix2pix以外的方法来说效果好很多。而相对于pix2pix,CycleGAN 生成的图片虽然不够清晰,但基本接近。
4.总结
CycleGAN 解决了pix2pix 必须使用成对数据进行训练的问题,原理比较简单,但非常有效。只需要不同域的一系列图片即可进行训练。类似的工作还有DualGAN,DiscoGAN。三者的想法和模型基本一样,发在了不同的地方。。