数据分析一般用什么工具啊?
发布网友
发布时间:2022-04-24 07:33
我来回答
共6个回答
热心网友
时间:2022-04-09 14:13
六个用于大数据分析的最好工具
一、Hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
二、HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
三、Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
四、Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.
据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。
五、RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
六、Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
热心网友
时间:2022-04-09 15:31
这里我把软件分成纵横四个层次的的象限图来表达!
第一维度:数据存储层——>数据报表层——>数据分析层——>数据展现层
第二维度:用户级——>部门级——>企业级——>BI级
第一:存储层
我们必须能够存储数据,对个人来讲至少应该掌握一种数据库技术,当然也不一定要熟练操作,但至少要能够理解数据的存储和数据的基本结构和数据类型,比如数据的安全性、唯一性、冗余性,表的关系,粒度,容量等,最好能够理解SQL查询语言的基本结构和读取等。
•Access2003、Access07等:这是最基本的个人数据库,经常用于个人或部分基本的数据存储;
•MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;
•SQL Server 2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;
•DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
•BI级,实际上这个不是数据库,而是建立在前面数据库基础上的,这个主要是数据库的企业应用级了,一般这个时候的数据库都叫数据仓库了,Data Warehouse,建立在DW级上的数据存储基本上都是商业智能平台,或许整合了各种数据分析,报表、分析和展现!
第二:报表层
当企业存储了数据后,首先要解决的报表,还不是分析问题,是要能够看到,看到报表,各种各样的报表!国内外有专门提供报表分析服务的企业和软件。
•Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。而且很多数据库内置的报表也是采用CR报表的开发版嵌入的!
•Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为我经常用它来从数据库中进行报表和可视化分析,先暂列在报表层;这个软件从3.0开始,现在已经有了5.1版本,两年的时间已经到了服务器和Web方式了!
当然,如果企业有上万张报表,需要好好管理起来,还有安全性,并发请求等,就需要有Server版;
博易智讯公司专门提供Crystal Report和Crystal Report Server版销售和软件服务;
第三:数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
•Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
•SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
•Clementine软件:当前版本13.0,数据挖掘工具,我从6.0开始用,到了13版,已经越来越多的提高了更多有好的建模工具,现在改名叫PASW Modeler 13建模器了。而且与SPSS统计功能有了更多的整合,数据处理也更加灵活和好用。
•SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
当然,我主要是采用SPSS和Clementine,有时候就是习惯,当然会了一种软件在学其他的也不是很困难!
•JMP分析:SAS的一个分析分支
•XLstat:Excel的插件,可以完成大部分SPSS统计分析功能
•Ucinet社会网分析软件:SNA社会网络分析是非常流行和有价值的分析工具和方法,特别是从关系角度进行分析社会网络,关系分析非常重要,过去我们都是属性数据分析
大家如果有需要试用版,可以联系博易智讯,他们可以提供SPSS和Clementine软件版本的咨询。
第四:表现层
Excel有需求
•PowerPoint软件:这个没得说了,大部分人都是用PPT写报告;
•Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
•Swiff Chart软件:制作图表的软件,生成的是Flash;
•Color Wheel软件:配色软件
•Yed软件:网络关系图、流程图和图形分析软件,类似SNA分析,我经常用来设计流程图,还有就是分析优化关系图;
•Netdraw软件:这是社会网络分析展现软件,主要是可视化网络关系图的,读取Ucinet软件;
•Mindmanager软件:思维导图,非常好的软件,可以把非线性思维很快构建起来,并且项目组织管理、报告设计构想都可以应用,直接生成PPT等,当然这个软件功能非常强大,我的学生都用它来做笔记和会议记录;
•Xcelsius软件:Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表;这个是我最希望应用的一个软件工具,非常有价值!
最后,需要说明的是,我这样的分层分类并不是区分软件,只是想说明软件的应用,其实每个层次的软件都是相互融合的,追求:平台化,整合化,智能化,可视化,专业化,都是各有特色;价格也不同,有免费的,有上百万的;有单机版的,有服务器版的;有正版的,有盗版的!
有时候我们把数据库就用来进行报表分析,有时候报表就是分析,有时候分析就是展现;当然有时候展现就是分析,分析也是报表,报表就是数据存储了。
热心网友
时间:2022-04-09 17:05
付费内容限时免费查看回答您好,用bdp个人版制作,支持几十种数据图表,可视化效果不错。
热心网友
时间:2022-04-09 18:57
一般80%的数据分析都可以用excel解决的,
还有spss、sas等工具!
热心网友
时间:2022-04-09 21:21
电子表格,spass
热心网友
时间:2022-04-10 00:03
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
Python
Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。
常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
R软件
R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
SPSS
SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。
Excel
可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
SAS软件
SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。