发布网友 发布时间:2022-04-24 23:58
共1个回答
热心网友 时间:2023-10-15 19:13
在天文观测中可以测量到红移,因为原子的发射光谱和吸收光谱,与在地球上的实验室内的分光仪校准好的光谱比较时,是非常的明显。当从同一个天体上测量到各种不同的吸收和发射谱线时,z被发现是一个常数。虽然来自遥远天体的谱线可能会被污染,并且有轻微的变宽,但并不能够用热力学或机械的行为来解释。基于这些和其他的理由,公众的*已经将天文学上观测到的红移认定是三种类似的多普勒红移之一,而没有任何一种假说能如此的振振有词。
光谱学,用在测量上,比只要简单的通过特定的滤光器来测定天体亮度的光度学要困难。当测光时,可以利用所有的数据(例如,哈柏深空视场和哈柏超深空视场),天文学家依靠的是红移测光的技术,由于滤光器在某些波长的范围内非常灵敏,依靠这样的技术可以假定许多光谱的本质隐藏在光源之内,观测误差可以δz=0.5为级距来排序,并且比分光镜的更为可靠许多。然而,光度学无法考虑到红移的定性描述。例如,一个与太阳相似的光谱,但红移z=1,最为明亮的是在红外线的区域,而非以黄-绿为尖峰的黑体光谱,并且光的强度在经过滤光器时将减少二级(1+z)。 使用SOHO卫星的LASCOC1摄影机观测到的太阳日冕。这张图片是以铁XIV的5308Å谱线经都普勒仪观察日冕中的电浆接近与远离卫星的速度,转移成不同色码的一幅假色图。在附近的目标(在我们的银河系内的天体)观测到的红移几乎都与相对于视线方向上的速度有关。观察这样的红移和蓝移,让天文学家可以测量速度和分光星的参考质量。这种方法是英国天文学家威廉·哈金斯在1868年最先采用的。相同的,从光谱仪中对单独的一颗恒星所测得的微量的红移和蓝移是天文学家检测是否有行星系环绕着恒星的诊断和测量的方法之一。对红移更精确的测量被应用于日震学上,藉以精确的测量太阳光球的运动。红移也被应用于第一次的行星自转速率的测量、星际云的速度、星系的自转,还有吸积的动力学呈现在中子星和黑洞的多普勒和重力红移。
另外,还有各种不同辐射和吸收的温度造成的多普勒致宽-对单一的吸收或辐射谱线造成的红移和蓝移的效应。测量来自不同方向的氢线21公分波的扩展和转移,天文学家能测量出星际气体的退行速度,揭露出我们银河系的自转曲线。相同的测量也被应用在其他的星系,例如仙女座星系。做为一种诊断的工具,红移测量在天文学的分光学中是最重要的工具之一。 宇宙中合于哈勃定律的天体距离越远就有越大的红移,因此被观测到有最大红移,对应于最遥远的距离也有最长的回应时间的天体是宇宙微波背景辐射,红移的数值高达z=1089(z=0相当于现在的时间),在宇宙年龄为137亿年的状态下,相当于大爆炸之后379000年的时间。核心像点光源的类星体是“红移”(z>0.1)最高的天体,是在望远镜改善之前,除了星系之外还能被发现的其他高红移天体。被发现红移最高的类星体是z=6.4,被证实红移最高的星系是z=7.0在尚未经确认的报告中显示,透过重力透镜观测到的遥远星系集团有红移高达z=10的星系。
对比本星系群遥远,但仍在室女座星系团附近,距离为10亿秒差距左右的星系,红移与星系的距离是近似成比例的,这种关系最早是由哈柏发现的,也就是众所皆知的哈勃定律。星系红移最早是VestoSlipher大约在1912年发现的,而哈柏结合了Slipher的测量成为度量天体距离的另一种方法-哈柏定律。在建基于广义相对论下被广泛接受的宇宙模型中,红移是空间扩展的主要结果:这意味着遥远的星系都离我们而去,光离开星系越久,空间的扩展也越多,所以光也就被延伸越多,红移的值也就越大,所以越远的看起来就移动的越快。哈柏定律一样适用哥白尼原则,由于我们通常不知道天体有多明亮,测量红移会比直接测量距离容易,所以使用哈柏定律就可以得知天体大略的距离。
星系之间的和星系团的重力交互作用在正常的哈柏图上导致值得注意的消散,星系的本动速度和在宇宙中的维理天体的迷踪质量相叠加,这种作用导致在附近的星系(像仙女座星系)显示出蓝移的现象,并且向共同的重心接近,同时星系团的红移图像上帝的手指在作用使本动速度的消散大致成球型的分布。这个增加的组合给了宇宙学家一个单独测量质量的质光比(以太阳的质量和光为单位的星系的质量与光度比值),是寻找暗物质的重要工具。
对更遥远的星系,目前的距离和红移之间的关连性变得更为复杂。当你看见一个遥远的星系,也就是看见相当久远之前的星系,而那时的宇宙和现在是不同的。在那些早期的时刻,我们期待在俇展的速率上有所不同,原因至少有二个: 星系之间相互的重力吸引会减缓宇宙的扩张行动 可能存在的宇宙常数或第五元素与可能会改变宇宙扩张的速率。 最近的观测却建议宇宙的扩张不仅没有如同第一点的预测减速,反而在加速中。这是广泛的,虽然不是相当普遍的,相信这是因为有暗物质在控制着宇宙的发展。这样的宇宙常数暗示宇宙的最后命运不是大挤压,反而可预见宇宙将长久存在。(可是在宇宙内多数的物理程序仍然朝向热死亡。)
扩张的宇宙是大霹雳理论的中心预言,如果往前追溯,理论预测"奇点"的存在,而那时的宇宙有无限大的密度;广义相对论的理论,大霹雳的理论依据,将不再能适用。最有可能取代的理论据信是尚未成熟的量子重力学,能在密度变得无穷大之前继续适用。 在先进的自动化望远镜和改良的光谱仪合作之下,以一定数量星空的红移当成宇宙的投影,通过红移与角度位置数据的结合,红移巡天图可以显示天空中一定范围内物质的立体分布状态。这些观测被用来研究宇宙的宇宙的大尺度结构,长城、许多广达5亿光年的超星系团,红移巡天的检测提供了戏剧性的大尺度构造的例子。
第一次红移巡天是CfA红移巡天,开始于1977年,至1982年完成最初的资料蒐集。最近的有2度视场星系红移巡天,测量宇宙在一个部份的大尺度结构,量测了22万个星系的z值,最后的结果已经在2003年6月释出。(除了描绘星系在大尺度的模型,2度视场也可以估计微中子质量的上限。)其他值得重视的研究还有史隆数位巡天(SDSS),在2005年仍在继续进行中,目标瞄准在观测一亿个天体。SDSS已经观测到红移高达0.4的星系和红移超过z=6的类星体。深度2红移巡天使用凯克望远镜和新的“DEIMOS”光谱仪,是深度1计划的延续。深度2是设计来研究红移0.7或更高的黯淡星系,因此可以填补SDSS和2df计划的不足。