磁控溅射的原理?
发布网友
发布时间:2022-04-25 00:00
我来回答
共4个回答
热心网友
时间:2023-08-08 16:01
磁控溅射原理:用高能粒子(通常是由电场加速的正离子)轰击固体表面,固体表面的原子,分子与入射的高能粒子交换动能后从固体表面飞测出来的现象称为磁控溅射。
溅射出来的原子(或原子团)具有一定的能量,它们可以重新沉积凝聚在固体基片表面上形成薄膜,称为测时镀膜、通堂是利用气体放电产生气体电离,其正离子在电场作用下高速轰击阴极靶材,击出阴极靶材的原子或分子,使其飞向被镀基片的表面沉积成有色的金属导申薄膜。
热心网友
时间:2023-08-08 16:02
磁控溅射是一种常用的真空薄膜制备技术,其原理主要包括以下几个方面:
1. 真空环境:磁控溅射需要在真空环境下进行,通常使用的真空度为10^-3~10^-6 Pa的高真空或超高真空。这可以有效减少氧化、碳化等污染物的存在,提高薄膜的质量。
2. 靶材:将待制备薄膜的材料作为靶材,放置在真空室内并连接到负极上。加上正极电压后,靶材表面的原子或分子开始被剥离。
3. 离子轰击:通过向靶材表面加速离子束,使靶材表面的原子或分子受到高能离子的轰击,产生溅射现象。这些溅射的原子或分子会沉积到衬底表面,并逐渐形成薄膜。
4. 磁场:在真空室内设置一个磁场,使得靶材表面的溅射粒子在磁场的引导下形成一个密集的电子云,从而提高溅射效率和薄膜形态的均匀性。
5. 衬底:在真空室内放置待制备薄膜的衬底,通常选择具有良好机械、化学稳定性和热稳定性的基础材料。衬底表面收集的沉积原子或分子最终形成所需的薄膜。
热心网友
时间:2023-08-08 16:02
电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子。电子飞向基片,氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面做圆周运动,该电子的运动路径很长,在运动过程中不断撞击电离出大量的氩离子轰击靶材,经过多次的碰撞后电子的能量逐渐降低,拜托磁力线的束缚,远离靶材,最终沉积在基片上。
热心网友
时间:2023-08-08 16:03
基本原理 :
磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。
磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高
电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于
磁控溅射
一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。