问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

火焰原子吸收光谱法的发展现状?

发布网友 发布时间:2022-04-24 18:54

我来回答

3个回答

热心网友 时间:2023-11-04 04:39

  转载:《分析测试百科网》
  我国火焰原子吸收光谱分析技术的发展

  摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。
  关键词:火焰原子吸收光谱 发展 分析技术

  Development of flame atomic absorption spectrometry in China

  Deng Bo
  (Department of Chemistry,Qinghua University,Beihing)

  Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲

  1 引 言
  1955年澳大利亚的A.Walsh〔1〕以及荷兰的C.T.J.Akemade和J.M.W.Milatz〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰A.Walsh和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。
  自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。
  1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。
  30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。

  2 进样技术
  进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是E.Sebastiani等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。
  卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到2.1%。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金*消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。
  近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏7.6倍,测定了钢样中的铬,分析速度为100次/h。

  3 火焰原子化技术
  原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到2.5μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到1.2μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。
  冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。

  4 原子捕集技术
  原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。
  黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到9.1×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了9.1和4.2倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。
  孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善。
  其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100。检出限为2.0ng/mL。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。
  燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍。
  谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2)。
  杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。

  5 增感效应和增感技术
  在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1%。
  张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。
  魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到26.5倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。
  周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。
  孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为0.021μg/mL,比常规法检出限0.15μg/mL低得多,灵敏度提高17倍。

  6 氢化物发生技术
  自从1969年W.Holak〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。
  宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为0.035μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为4.0×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为0.083、0.090和0.088μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由1.4μg/L降低到0.06μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。
  过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年I.S.Busheina等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为0.3μg。严杜等〔73〕作了改进,将灵敏度提高到0.13μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到0.12μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。
  丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。
  陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为1.3ng/mL,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入0.5%NaBH4乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为6.8×10-10g。
  刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) 0.51ng,As(Ⅲ) 0.43ng,MMA 0.38ng,DMA 0.67ng。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。
  对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。

  7 联用技术
  元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。
  1966年B.Kolb等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为0.2ng/m3。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为0.3ng和0.04ng。
  吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=4.0~5.0,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为0.1ng、0.09ng和0.1ng。

  8 分离富集技术
  化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。
  陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为0.05mg/t、0.1mg/t和0.5mg/t。沈振天等〔97〕在六次甲基四胺存在下,pH=7.2,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为0.0005μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。
  林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到0.0038μg/mL/1%,方法简便。

  朋友可以到行业内专业的网站进行交流学习!
  分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

热心网友 时间:2023-11-04 04:40

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:
(1)用可调谐激光代替空心阴极灯光源。

原子吸收光谱
(2)用激光使样品原子化。它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品

热心网友 时间:2023-11-04 04:40

基本知识
方法原理
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。 当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原 原子吸收光谱仪
子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱仪的组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。 A 光源 作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性 一般采用:空心阴极灯 无极放电灯 B 原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。 a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成 特点:操作简便、重现性好 b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化、高温净化 原子化效率高:在可调的高温下试样利用率达100% 灵敏度高:其检测限达10-6~10-14 试样用量少:适合难熔元素的测定 c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。 d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气。 C 分光系统(单色器) 由凹面反射镜、狭缝或色散元件组成 色散元件为棱镜或衍射光栅 单色器的性能是指色散率、分辨率和集光本领 D 检测系统率 由检测器(光电倍增管)、放大器、对数转换器和电脑组成
最佳条件的选择
A 吸收波长的选择 B 原子化工作条件的选择 a 空心阴极灯工作条件的选择(包括预热时间、工作电流) b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度) c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度) C 光谱通带的选择 D 检测器光电倍增管工作条件的选择
干扰及消除方法
干扰分为:化学干扰、物理干扰、电离干扰、光谱干扰、背景干扰 化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂 背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应法 原子吸收光谱法的优点与不足。 (1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。 (2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。 (3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。 (4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。 (5) 仪器比较简单,操作方便。 (6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

热心网友 时间:2023-11-04 04:39

  转载:《分析测试百科网》
  我国火焰原子吸收光谱分析技术的发展

  摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。
  关键词:火焰原子吸收光谱 发展 分析技术

  Development of flame atomic absorption spectrometry in China

  Deng Bo
  (Department of Chemistry,Qinghua University,Beihing)

  Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲

  1 引 言
  1955年澳大利亚的A.Walsh〔1〕以及荷兰的C.T.J.Akemade和J.M.W.Milatz〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰A.Walsh和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。
  自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。
  1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。
  30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。

  2 进样技术
  进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是E.Sebastiani等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。
  卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到2.1%。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金*消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。
  近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏7.6倍,测定了钢样中的铬,分析速度为100次/h。

  3 火焰原子化技术
  原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到2.5μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到1.2μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。
  冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。

  4 原子捕集技术
  原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。
  黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到9.1×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了9.1和4.2倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。
  孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善。
  其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100。检出限为2.0ng/mL。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。
  燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍。
  谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2)。
  杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。

  5 增感效应和增感技术
  在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1%。
  张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。
  魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到26.5倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。
  周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。
  孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为0.021μg/mL,比常规法检出限0.15μg/mL低得多,灵敏度提高17倍。

  6 氢化物发生技术
  自从1969年W.Holak〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。
  宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为0.035μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为4.0×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为0.083、0.090和0.088μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由1.4μg/L降低到0.06μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。
  过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年I.S.Busheina等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为0.3μg。严杜等〔73〕作了改进,将灵敏度提高到0.13μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到0.12μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。
  丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。
  陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为1.3ng/mL,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入0.5%NaBH4乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为6.8×10-10g。
  刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) 0.51ng,As(Ⅲ) 0.43ng,MMA 0.38ng,DMA 0.67ng。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。
  对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。

  7 联用技术
  元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。
  1966年B.Kolb等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为0.2ng/m3。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为0.3ng和0.04ng。
  吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=4.0~5.0,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为0.1ng、0.09ng和0.1ng。

  8 分离富集技术
  化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。
  陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为0.05mg/t、0.1mg/t和0.5mg/t。沈振天等〔97〕在六次甲基四胺存在下,pH=7.2,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为0.0005μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。
  林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到0.0038μg/mL/1%,方法简便。

  朋友可以到行业内专业的网站进行交流学习!
  分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

热心网友 时间:2023-11-04 04:40

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:
(1)用可调谐激光代替空心阴极灯光源。

原子吸收光谱
(2)用激光使样品原子化。它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品

热心网友 时间:2023-11-04 04:39

  转载:《分析测试百科网》
  我国火焰原子吸收光谱分析技术的发展

  摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。
  关键词:火焰原子吸收光谱 发展 分析技术

  Development of flame atomic absorption spectrometry in China

  Deng Bo
  (Department of Chemistry,Qinghua University,Beihing)

  Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲

  1 引 言
  1955年澳大利亚的A.Walsh〔1〕以及荷兰的C.T.J.Akemade和J.M.W.Milatz〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰A.Walsh和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。
  自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。
  1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。
  30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。

  2 进样技术
  进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是E.Sebastiani等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。
  卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到2.1%。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金*消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。
  近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏7.6倍,测定了钢样中的铬,分析速度为100次/h。

  3 火焰原子化技术
  原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到2.5μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到1.2μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。
  冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。

  4 原子捕集技术
  原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。
  黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到9.1×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了9.1和4.2倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。
  孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善。
  其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100。检出限为2.0ng/mL。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。
  燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍。
  谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2)。
  杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。

  5 增感效应和增感技术
  在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1%。
  张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。
  魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到26.5倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。
  周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。
  孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为0.021μg/mL,比常规法检出限0.15μg/mL低得多,灵敏度提高17倍。

  6 氢化物发生技术
  自从1969年W.Holak〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。
  宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为0.035μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为4.0×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为0.083、0.090和0.088μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由1.4μg/L降低到0.06μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。
  过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年I.S.Busheina等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为0.3μg。严杜等〔73〕作了改进,将灵敏度提高到0.13μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到0.12μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。
  丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。
  陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为1.3ng/mL,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入0.5%NaBH4乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为6.8×10-10g。
  刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) 0.51ng,As(Ⅲ) 0.43ng,MMA 0.38ng,DMA 0.67ng。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。
  对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。

  7 联用技术
  元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。
  1966年B.Kolb等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为0.2ng/m3。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为0.3ng和0.04ng。
  吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=4.0~5.0,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为0.1ng、0.09ng和0.1ng。

  8 分离富集技术
  化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。
  陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为0.05mg/t、0.1mg/t和0.5mg/t。沈振天等〔97〕在六次甲基四胺存在下,pH=7.2,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为0.0005μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。
  林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到0.0038μg/mL/1%,方法简便。

  朋友可以到行业内专业的网站进行交流学习!
  分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

热心网友 时间:2023-11-04 04:39

  转载:《分析测试百科网》
  我国火焰原子吸收光谱分析技术的发展

  摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。
  关键词:火焰原子吸收光谱 发展 分析技术

  Development of flame atomic absorption spectrometry in China

  Deng Bo
  (Department of Chemistry,Qinghua University,Beihing)

  Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲

  1 引 言
  1955年澳大利亚的A.Walsh〔1〕以及荷兰的C.T.J.Akemade和J.M.W.Milatz〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰A.Walsh和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。
  自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。
  1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。
  30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。

  2 进样技术
  进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是E.Sebastiani等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。
  卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到2.1%。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金*消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。
  近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏7.6倍,测定了钢样中的铬,分析速度为100次/h。

  3 火焰原子化技术
  原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到2.5μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到1.2μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。
  冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。

  4 原子捕集技术
  原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。
  黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到9.1×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了9.1和4.2倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。
  孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善。
  其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100。检出限为2.0ng/mL。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。
  燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍。
  谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2)。
  杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。

  5 增感效应和增感技术
  在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1%。
  张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。
  魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到26.5倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。
  周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。
  孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为0.021μg/mL,比常规法检出限0.15μg/mL低得多,灵敏度提高17倍。

  6 氢化物发生技术
  自从1969年W.Holak〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。
  宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为0.035μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为4.0×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为0.083、0.090和0.088μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由1.4μg/L降低到0.06μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。
  过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年I.S.Busheina等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为0.3μg。严杜等〔73〕作了改进,将灵敏度提高到0.13μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到0.12μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。
  丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。
  陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为1.3ng/mL,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入0.5%NaBH4乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为6.8×10-10g。
  刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) 0.51ng,As(Ⅲ) 0.43ng,MMA 0.38ng,DMA 0.67ng。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。
  对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。

  7 联用技术
  元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。
  1966年B.Kolb等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为0.2ng/m3。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为0.3ng和0.04ng。
  吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=4.0~5.0,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为0.1ng、0.09ng和0.1ng。

  8 分离富集技术
  化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。
  陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为0.05mg/t、0.1mg/t和0.5mg/t。沈振天等〔97〕在六次甲基四胺存在下,pH=7.2,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为0.0005μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。
  林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到0.0038μg/mL/1%,方法简便。

  朋友可以到行业内专业的网站进行交流学习!
  分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

热心网友 时间:2023-11-04 04:40

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:
(1)用可调谐激光代替空心阴极灯光源。

原子吸收光谱
(2)用激光使样品原子化。它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品

热心网友 时间:2023-11-04 04:39

  转载:《分析测试百科网》
  我国火焰原子吸收光谱分析技术的发展

  摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。
  关键词:火焰原子吸收光谱 发展 分析技术

  Development of flame atomic absorption spectrometry in China

  Deng Bo
  (Department of Chemistry,Qinghua University,Beihing)

  Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲

  1 引 言
  1955年澳大利亚的A.Walsh〔1〕以及荷兰的C.T.J.Akemade和J.M.W.Milatz〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰A.Walsh和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。
  自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。
  1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。
  30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。

  2 进样技术
  进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是E.Sebastiani等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。
  卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到2.1%。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金*消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。
  近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏7.6倍,测定了钢样中的铬,分析速度为100次/h。

  3 火焰原子化技术
  原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到2.5μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到1.2μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。
  冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。

  4 原子捕集技术
  原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。
  黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到9.1×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了9.1和4.2倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。
  孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善。
  其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100。检出限为2.0ng/mL。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。
  燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍。
  谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2)。
  杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。

  5 增感效应和增感技术
  在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1%。
  张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。
  魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到26.5倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。
  周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。
  孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为0.021μg/mL,比常规法检出限0.15μg/mL低得多,灵敏度提高17倍。

  6 氢化物发生技术
  自从1969年W.Holak〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。
  宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为0.035μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为4.0×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为0.083、0.090和0.088μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由1.4μg/L降低到0.06μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。
  过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年I.S.Busheina等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为0.3μg。严杜等〔73〕作了改进,将灵敏度提高到0.13μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到0.12μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。
  丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。
  陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为1.3ng/mL,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入0.5%NaBH4乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为6.8×10-10g。
  刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) 0.51ng,As(Ⅲ) 0.43ng,MMA 0.38ng,DMA 0.67ng。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。
  对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。

  7 联用技术
  元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。
  1966年B.Kolb等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为0.2ng/m3。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为0.3ng和0.04ng。
  吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=4.0~5.0,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为0.1ng、0.09ng和0.1ng。

  8 分离富集技术
  化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。
  陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为0.05mg/t、0.1mg/t和0.5mg/t。沈振天等〔97〕在六次甲基四胺存在下,pH=7.2,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为0.0005μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。
  林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到0.0038μg/mL/1%,方法简便。

  朋友可以到行业内专业的网站进行交流学习!
  分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

热心网友 时间:2023-11-04 04:40

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:
(1)用可调谐激光代替空心阴极灯光源。

原子吸收光谱
(2)用激光使样品原子化。它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品

热心网友 时间:2023-11-04 04:40

基本知识
方法原理
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。 当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原 原子吸收光谱仪
子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱仪的组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。 A 光源 作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性 一般采用:空心阴极灯 无极放电灯 B 原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。 a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成 特点:操作简便、重现性好 b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化、高温净化 原子化效率高:在可调的高温下试样利用率达100% 灵敏度高:其检测限达10-6~10-14 试样用量少:适合难熔元素的测定 c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。 d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气。 C 分光系统(单色器) 由凹面反射镜、狭缝或色散元件组成 色散元件为棱镜或衍射光栅 单色器的性能是指色散率、分辨率和集光本领 D 检测系统率 由检测器(光电倍增管)、放大器、对数转换器和电脑组成
最佳条件的选择
A 吸收波长的选择 B 原子化工作条件的选择 a 空心阴极灯工作条件的选择(包括预热时间、工作电流) b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度) c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度) C 光谱通带的选择 D 检测器光电倍增管工作条件的选择
干扰及消除方法
干扰分为:化学干扰、物理干扰、电离干扰、光谱干扰、背景干扰 化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂 背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应法 原子吸收光谱法的优点与不足。 (1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。 (2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。 (3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。 (4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。 (5) 仪器比较简单,操作方便。 (6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

热心网友 时间:2023-11-04 04:40

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:
(1)用可调谐激光代替空心阴极灯光源。

原子吸收光谱
(2)用激光使样品原子化。它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品

热心网友 时间:2023-11-04 04:40

基本知识
方法原理
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。 当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原 原子吸收光谱仪
子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱仪的组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。 A 光源 作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性 一般采用:空心阴极灯 无极放电灯 B 原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。 a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成 特点:操作简便、重现性好 b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化、高温净化 原子化效率高:在可调的高温下试样利用率达100% 灵敏度高:其检测限达10-6~10-14 试样用量少:适合难熔元素的测定 c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。 d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气。 C 分光系统(单色器) 由凹面反射镜、狭缝或色散元件组成 色散元件为棱镜或衍射光栅 单色器的性能是指色散率、分辨率和集光本领 D 检测系统率 由检测器(光电倍增管)、放大器、对数转换器和电脑组成
最佳条件的选择
A 吸收波长的选择 B 原子化工作条件的选择 a 空心阴极灯工作条件的选择(包括预热时间、工作电流) b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度) c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度) C 光谱通带的选择 D 检测器光电倍增管工作条件的选择
干扰及消除方法
干扰分为:化学干扰、物理干扰、电离干扰、光谱干扰、背景干扰 化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂 背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应法 原子吸收光谱法的优点与不足。 (1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。 (2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。 (3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。 (4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。 (5) 仪器比较简单,操作方便。 (6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

热心网友 时间:2023-11-04 04:40

基本知识
方法原理
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。 当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原 原子吸收光谱仪
子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱仪的组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。 A 光源 作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性 一般采用:空心阴极灯 无极放电灯 B 原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。 a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成 特点:操作简便、重现性好 b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化、高温净化 原子化效率高:在可调的高温下试样利用率达100% 灵敏度高:其检测限达10-6~10-14 试样用量少:适合难熔元素的测定 c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。 d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气。 C 分光系统(单色器) 由凹面反射镜、狭缝或色散元件组成 色散元件为棱镜或衍射光栅 单色器的性能是指色散率、分辨率和集光本领 D 检测系统率 由检测器(光电倍增管)、放大器、对数转换器和电脑组成
最佳条件的选择
A 吸收波长的选择 B 原子化工作条件的选择 a 空心阴极灯工作条件的选择(包括预热时间、工作电流) b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度) c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度) C 光谱通带的选择 D 检测器光电倍增管工作条件的选择
干扰及消除方法
干扰分为:化学干扰、物理干扰、电离干扰、光谱干扰、背景干扰 化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂 背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应法 原子吸收光谱法的优点与不足。 (1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。 (2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。 (3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。 (4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。 (5) 仪器比较简单,操作方便。 (6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

热心网友 时间:2023-11-04 04:40

基本知识
方法原理
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。 当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原 原子吸收光谱仪
子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱仪的组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。 A 光源 作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性 一般采用:空心阴极灯 无极放电灯 B 原子化器(atomizer) 可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。 a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成 特点:操作简便、重现性好 b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化、高温净化 原子化效率高:在可调的高温下试样利用率达100% 灵敏度高:其检测限达10-6~10-14 试样用量少:适合难熔元素的测定 c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。 d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气。 C 分光系统(单色器) 由凹面反射镜、狭缝或色散元件组成 色散元件为棱镜或衍射光栅 单色器的性能是指色散率、分辨率和集光本领 D 检测系统率 由检测器(光电倍增管)、放大器、对数转换器和电脑组成
最佳条件的选择
A 吸收波长的选择 B 原子化工作条件的选择 a 空心阴极灯工作条件的选择(包括预热时间、工作电流) b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度) c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度) C 光谱通带的选择 D 检测器光电倍增管工作条件的选择
干扰及消除方法
干扰分为:化学干扰、物理干扰、电离干扰、光谱干扰、背景干扰 化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂 背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应法 原子吸收光谱法的优点与不足。 (1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。 (2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。 (3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。 (4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。 (5) 仪器比较简单,操作方便。 (6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
微创包皮手怎么是像订书针一样扎在上面 感谢领导精辟诗句 感恩领导的诗句 最顶级的感谢领导的诗句 世界斯诺克排行榜前10名的名单 斯诺克积分规则 ...多可以用12小时顺流航行,每小时可行30千米。逆流航行每小 ...顺流每小时行30千米,逆流每小时行20千米.这艘船在A、B两地之间往返... ...乙两地往返航行,顺流每小时行30千米,逆流每小时行20千米.问:这艘船... ...航行,顺流每小时行30千米,逆流每小时行20千米,这艘船在A B两地之间... 谁有一整套的FEPC项目管理方案? 请回这个什么成语? 制作门口雨搭斜多少好看? 增加地下车库雨棚需要办审批手续吗 车库雨棚玻璃下面带一圈铝合金副框起到什么作用? 车库坡道雨棚属于什么工程 小区车库雨棚不属于城管管吗? 地下停车场出入口结构玻璃雨棚高度多少才算侧面平方数 想请教一下,地下车库的入口处的钢结构雨棚具体计算,现在没有思路,请高人指点下 地下车库玻璃雨棚工费多少钱一平米 车库顶上搭建玻璃雨棚能够审批下来吗? usb3.1传输速度是多少? 车库入口雨棚钢结构都需要做哪几项检测 usb3.1接口的主板我是USB3.0的硬盘。可以正常使用么。会不会影响传输速度。 车库遮雨棚一般做成什么样子的 USB3.1是目前为止最快的插口吗? 地下车库入口雨棚安装做哪些资料 usb3.1和usb3.0外观有什么区别? 地下车库出入口玻璃雨棚执行哪个验收规范 车库门上面有雨棚吗 矿床模式、异常模式及研究现状 如何用电视连接电脑看网站的电影 (创维酷开TV和索尼VGN-FE35C)100分 惠普电脑显示设置时出现:启动c:\Users\12979\Appdata\Local\Temp\FE7C.dll时出现问题,找不到指定的模块 电脑蓝屏代码:0x000000FE是什么意思呀?请高手们帮帮忙啊!!!! 0x0fe10068 指令用的 0x0fe10068 内存。该内存不能为'written" FE约战小程序的约战模式是怎样的啊? 能告诉我欧姆龙CX-Programmer7.3免费版PLC编程软件的安装步骤吗? 你好,我笔记本型号fx86fe重做过系统后FN+F5调节风扇模式不能用了,那个ATK驱动也没找到,可以给个链接吗 会用“影子模式”的朋友请进来一下(Shadow Defe 蓝屏代码0x000000FE 汽车车损险收费标准 请教高手,"0X01211fe7"指令引用的"0X01211fe7.什么意思? 大众宝来保险杠坏了重新换新的要多少钱 一汽大众全损换新车啥意思有明白解释一下? 如何修改pdf文件里的文字行间距 我修改PDF格式的文件,删除一行后,行间距变大了,怎么调整行间距呢? PDF中页与页中间的间隙应该如何去掉 pdf文件页面之间的间距如何调整 安息香缩合的实验步骤 安息香缩合反应可逆吗