问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

四点共圆的判定和性质

发布网友 发布时间:2022-04-25 00:33

我来回答

4个回答

热心网友 时间:2023-10-17 19:05

判定定理:

方法1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)

方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)

四点共圆有三个性质:

(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;

(2)圆内接四边形的对角互补;

(3)圆内接四边形的外角等于内对角。

扩展资料

托勒密定理

若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB*DC+BC*AD=AC*BD。

例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。

解答:归纳法。我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。n=1,n=2很轻松。当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。我们发现这样的三个点共圆,边长最长的边是一条直径。假设对于n大于等于3成立,我们来证明n+1。

假设直径为r(整数)。找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长a<b<c)。把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。

这个三角形在圆上面对应了第n+1个点,记为P。于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。

参考资料:百度百科-四点共圆



热心网友 时间:2023-10-17 19:05

判定定理:

方法1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)

方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)

四点共圆有三个性质:

(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;

(2)圆内接四边形的对角互补;

(3)圆内接四边形的外角等于内对角。

扩展资料:

证明方法:

方法1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆.

方法2

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

几何描述:四边形ABCD中,∠BAC=∠BDC,则ABCD四点共圆。

证明:过ABC作一个圆,明显D一定在圆上。若不在圆上,可设射线BD与圆的交点为D',那么∠BD'C=∠BAC=∠BDC,与外角定理矛盾。

方法3

把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

证法见上

参考资料:百度百科-四点共圆

热心网友 时间:2023-10-17 19:06

四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”
证明四点共圆有下述一些基本方法:

方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2 把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.

方法3 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

方法4 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法5 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.

方法6 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.

判定与性质:
圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180度,
角ABC=角ADC(同弧所对的圆周角相等)。
角CBE=角D(外角等于内对角)
△ABP∽△DCP(三个内角对应相等)
AP*CP=BP*DP(相交弦定理)
AB*CD+AD*CB=AC*BD(托勒密定理)

热心网友 时间:2023-10-17 19:06

判定定理:

方法1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)

方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)

四点共圆有三个性质:

(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;

(2)圆内接四边形的对角互补;

(3)圆内接四边形的外角等于内对角。

扩展资料


托勒密定理

若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB*DC+BC*AD=AC*BD。

例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。

解答:归纳法。我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。n=1,n=2很轻松。当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。我们发现这样的三个点共圆,边长最长的边是一条直径。假设对于n大于等于3成立,我们来证明n+1。

假设直径为r(整数)。找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长a<b<c)。把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。

这个三角形在圆上面对应了第n+1个点,记为P。于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。

参考资料:百度百科-四点共圆

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
PCR有哪些分类? 不鸣则已 一鸣惊人的三个星座 电动车加装蓝牙音箱怎么接线 怎么把QQ同步助手卸载掉?简直就是垃圾,什么没操作就直接给安装上了,怎... 怎么把QQ同步助手卸载掉?简直就是流氓软件。什么东西没经过我点‘’同 ... excel表如何将相间隔的不同两行组合在一起,成为一行? excel工作表如何对行各自组合 考科目一自己去还是驾校统一去 科目一是自己考还是在驾校 社保转移后,新单位没要转移单,只要了身份证,是不是就可以办理了 什么是社保转移 物业门岗操作规程培训心得 揭秘深海鱼,为何深海鱼到底长得大多都是奇形怪状? 物业管理经理培训心得怎么写?? 深海鱼类种种讲的是什么? 求一份物业保安培训总结 开骨灰盒有什么技巧吗? 怎样写物业管理培训后心得体会 800字左右。先给100分。外加100悬赏分... 如何把骨灰放在骨灰盒里,是什么方向放置? 海洋里有多少种鱼? 物业培训心得 海洋鱼类 木质骨灰盒制作方法?可以说一下详细的制作过程吗? 神经系统疾病可以治疗吗? 骨灰盒下葬的注意事项和程序是什么? 什么是海洋鱼类 海底鱼是怎么神奇的? 何谓中枢神经系统协调障碍,半岁以内发现愈后如何? 海洋里的鱼有什么? 中枢神经系统协调障碍 我找一个女孩,她的名字叫王会娣,谁知道她的消息。 怎么开骨灰盒 如何做好高端物业服务工作培训心得 什么鱼是深海鱼 物业保安培训小结,问:学到了什么?我该怎么答? 四点共圆解题方法 四点共圆 关于四点共圆的理解 万科物业保安培训总结 国际白金物业管家培训总结怎么写 学习物业管理培训后的总结可以参考一下吗 小米路由器怎么设置,将所有访问导向一个网址? 物业管理学习培训内容 小米路由器可以精确地控制登录某一类型的网址? 小米路由器设置网址打不开怎么办 手机云游戏软件哪个好? - 信息提示 怎么把耳机加进查找 您好,我想问一下我安装了labview的DAQmx驱动,在开始菜单、程序、NI下可以找到NI-DAQ文件夹,但是。。。 安超桌面云可以有哪些应用? 为什么在我的labview函数面板中没有出现ni daqmx ni daq vi