证明 向量e1、e2、e3共面的充要条件是“存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”
发布网友
发布时间:2022-04-25 01:56
我来回答
共2个回答
热心网友
时间:2023-10-20 08:10
1.若向量e1、e2、e3共面,
(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是
λe1+μe2-e3=0.
即存在三个不全为零的实数λ,μ,υ=-1,使得
λe1+μe2+υe3=0”。
(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.
2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,
就有e1=(-μ/λ)e2+(-υ/λ)e3,
于是e1,e2,e3共面。
热心网友
时间:2023-10-20 08:11
1楼正解!