参数检验和非参数检验分别有哪些
发布网友
发布时间:2022-04-26 20:20
我来回答
共3个回答
热心网友
时间:2022-05-03 11:03
1、非参数检验
SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
2、参数检验
当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。这类问题往往用参数检验来进行统计推断。它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。
扩展资料
1、参数检验一般对总体有一定的要求,而非参数检验对总体无特殊的需求,因此,非参数检验比参数检验应用范围要广。
2、符合参数检验条件,也符合非参数检验,我们选择哪种方法进行分析呢?答案是选择参数检验。因为参数检验的准确度比非参数检验要高;
3、对于同时符合参数与非参数检验的数据,如果参数检验P<0.05,非参数检验不一定P<0.05。
4、对于同时符合参数与非参数检验的数据,如果非参数检验P<0.05,那么参数检验一定P<0.05。
5、很多人采用非参数检验得到P<0.05的结果时,发在表文章时不自信,总认为自己的数据不好,其实大可不必。
参考资料来源:百度百科-参数检验
参考资料来源:百度百科-非参数检验
热心网友
时间:2022-05-03 12:21
计量资料一般是参数、非参数检验都是可以的。但是对于能使用参数检验的,首选参数检验,对不能满足条件的才选用非参数检验。
参数检验 一般有:T检验,方差分析,(要求:方差齐性、正态分布)一般也是用于计量资料。选用非参数检验的情况有:①总体分布不易确定(也就是不知道是不是正态分布)②分布呈非正态而无适当的数据转换方法③等级资料④一段或两段无确定数据等(比如一段的数据是>50,是一个开区间)
1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
3,参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。当然,上一节介绍的拟合优度检验也是非参数检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有 3类:计数统计量、秩统计量、符号秩统计量。
热心网友
时间:2022-05-03 13:56
计量资料一般是参数、非参数检验都是可以的。但是对于能使用参数检验的,首选参数检验,对不能满足条件的才选用非参数检验。
参数检验
一般有:t检验,方差分析,(要求:方差齐性、正态分布)一般也是用于计量资料。选用非参数检验的情况有:①总体分布不易确定(也就是不知道是不是正态分布)②分布呈非正态而无适当的数据转换方法③等级资料④一段或两段无确定数据等(比如一段的数据是>50,是一个开区间)
1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
3,参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。当然,上一节介绍的拟合优度检验也是非参数检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有
3类:计数统计量、秩统计量、符号秩统计量。