送分了!!!您出个数学题给我做
发布网友
发布时间:2022-04-26 17:00
我来回答
共15个回答
热心网友
时间:2022-04-24 05:55
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
热心网友
时间:2022-04-24 07:13
1)第一个问题:用4个5,采用加减乘除的方法,得到24,如何立式?
2)第二个问题:用三根火柴,如何放置,得到一个大于3小于4的数?
3)第三个问题:诸如1/3、4/9、10/21、100/201等等这类的分数称为成功分数,请用三个成功分数填空()*()/()=7/16,其中括号里为成功分数。
4)第四个问题:见图片,小明院内有一个边长为2米正五边形物体,他用一个长为5米绳子绷紧后将小狗栓在五边形的一个脚上,小狗从A点出发,围绕五边形跑,问小狗能跑多远,路程是多少?
热心网友
时间:2022-04-24 08:48
1、一摩托车骑手欲飞跃黄河,设计摩托车沿跑道飞出时前进方向与水平方向的仰角是120,飞跃的水平距离是35米。为了安全,摩托车最高点与落地点的垂直落差约为10米。那么,骑手沿跑道飞出时的速度应为多少? (参考数据:sin120=0.2079,cos120=0.9781,tg120=0.2125)
2、王教授欲从北京出发,前往智利的圣地亚哥参加国际学术会议。假如只有两种旅行方案供选择:
甲方案:从北京出发飞往美国纽约,再从纽约飞往圣地亚哥。
乙方案:从北京出发飞往澳大利亚的弗里曼特尔,再从弗里曼特尔飞往圣地亚哥。
为简单起见,我们把北京 的地理位置粗略地认为是:东经120度,北纬40度;纽约的地理位置大致是:西经70度,北纬40度;澳大利亚的弗里曼特尔的地理位置大致位置是:东经120度,南纬30度:智利的圣地亚哥的地理位置大致是:西经70度,南纬30度。假设飞行航线走的都是球面距离,请你比较这两种方案哪一个飞行距离更短些?说明理由。
3、我国男足运动员转会至海外俱乐部常会成为体育媒体关注的热点新闻。05年8月,在上海申花俱乐部队员杜威确认转会至苏超凯尔特人俱乐部之前,各种媒体就两俱乐部对于杜威的转会费协商过程纷纷“爆料”:
媒体A:“……, 凯尔特人俱乐部出价已从80万英镑提高到了120万欧元。”
媒体B:“……, 凯尔特人俱乐部出价从120万欧元提高到了100万美元,同
时增加了不少附加条件。”
媒体C:“……, 凯尔特人俱乐部出价从130万美元提高到了120万欧元。”
请根据表中提供的汇率信息(由于短时间内国际货币的汇率变化不大,我们假定比值为定值),我们可以发现只有媒体 (填入媒体的字母编号)的报道真实性强一些。
【注】:当时的欧元兑美元的汇率为:1:1.19,英镑对欧元的汇率为:1:1.52.
热心网友
时间:2022-04-24 10:39
这里是我自己出的一道题。在上课的时候受启发。
---------------------------------------------------------------
在一间教室里有2n个学生,他们围绕老师坐成一圈。现在老师发起课堂讨论,分n组,每组2人。
分组是老师决定,学生没有选择,因此每个组的两个人可能并不坐在相邻的座位。
现问,无论起初学生坐在哪,无论如何分组,是否总可以让这些学生互相换座位,使得:
(1)每组至少有一个学生坐在原地不动,并且
(2)每组的两个学生坐在相邻的位置。
若可以,请给出证明。若不一定可以,请举出反例。
---------------------------------------------------------------
附英文版:
In a classroom there are 2n students sitting in a circle. In preparation for a class discussion, the instructor has divided the students into n pairs. Is it always possible for some of the students to exchange seats such that
(1) At least one in each pair of students does not have to move, and
(2) Each pair of students now sit beside each other?
----------------------------------------------------
这里是一个非原创题,在百度知道几年前悬赏200分,最后我解出来的:
----------------------------------------------------
已知函数f(x)在0处连续,且以下极限:
lim [h->0] ((f(3h)-f(h))/h)
存在并有限。
请问f在0处是否可导?若必可导,给出证明。否则给出不可导的反例。
提示:|x| 看似反例,其实不然。
---------------------------------------------------
最后给一道题,据说是前苏联IMO预选赛试题:
---------------------------------------------------
一个圆O,里面有6个与其内切的小圆O1,O2,...O6. 相邻的两个小圆(例如O1和O2, O2和O3, ...)之间外切。令O1和O之间的内切点为A1, O2和O之间的内切点为A2, 以此类推。求证:三条线段A1A4, A2A5, A3A6相交于一点。
热心网友
时间:2022-04-24 12:47
1.有3个人去投宿,
一晚30元.
三个人每人掏了10元凑够30元交给了老板.
后来老板说今天优惠只要25元就够了,
拿出5元命令服务生退还给他们,
服务生偷偷藏起了2元,
然后,
把剩下的3元钱分给了那三个人,
每人分到1元.
这样,
一开始每人掏了10元,
现在又退回1元,
也就是10-1=9,
每人只花了9元钱,
3个人每人9元,
3 X 9 = 27元 + 服务生藏起的2元=29元,
还有一元钱去了哪里???
此题在新西兰面试的时候曾引起巨大反响.
有谁知道答案呢?
(2).有个人去买葱
问葱多少钱一斤
卖葱的人说 1块钱1斤 这是100斤 要完100元
买葱的人又问 葱白跟葱绿分开卖不
卖葱的人说 卖 葱白7毛 葱绿3毛
买葱的人都买下了
称了称葱白50斤 葱绿50斤
最后一算葱白50*7等于35元
葱绿50*3等于15元
35+15等于50元
买葱的人给了卖葱的人50元就走了
而卖葱的人却纳闷了
为什么明明要卖100元的葱
而那个买葱的人为什么50元就买走了呢?
你说这是为什么?
好好想想 把答案留下
(3).有口井 7米深
有个蜗牛从井底往上爬
白天爬3米 晚上往下坠2米
问蜗牛几天能从井里爬出来?
想好答案留言
(4).一毛钱一个桃
三个桃胡换一个桃
你拿1块钱能吃几个桃?
想明白了留言,把你吃桃的方法写明白 ~
(5)有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那个重量异常的球找出来,并且知道它比其它十一个球较重还是较轻。
(6)一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜。已知驴一次性可驮1000根胡萝卜,但每走1公里又要吃掉1根胡萝卜。问:商人最多可卖出多少胡萝卜?
(7)话说某天一艘海盗船被天下砸下来的一头牛给击中了,5个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起,但是天已经很晚了,所以就睡觉先.
晚上某个家伙悄悄的起床,悄悄的将椰子分成5份,结果发现多一个椰子,顺手就给了幸运的猴子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成5份,结果发现多一个椰子,顺手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
又过了一会 ......
又过了一会 ...
总之5个家伙都起床过,都做了一样的事情。早上大家都起床,各自心怀鬼胎的分椰子了,这个猴子还真不是一般的幸运,因为这次把椰子分成5分后居然还是多一个椰子,只好又给它了.问题来了,这堆椰子最少有多少个?
(8)某个岛上有座宝藏,你看到大中小三个岛民,你知道大岛民知道宝藏在山上还是山下,但他有时说真话有时说假话,只有中岛民知道大岛民是在说真话还是说假话,但中岛民自己在前个人说真话的时候才说真话,前个人说假话的时候就说假话,这两个岛民用举左或右手的方式表示是否,但你不知道哪只手表示是,哪只手表示否,只有小岛民知道中岛民说的是真还是假,他用语言表达是否,他也知道左右手表达的意思。但他永远说真话或永远说假话,你也不知道他是这两种类型的哪一种,你能否用最少的问题问出宝藏在山上还是山下?(提示:如果你问小岛民宝藏在哪,他会反问你怎么才能知道宝藏在哪?等于白问一句)
(9)说一个屋里有多个桌子,有多个人?
如果3个人一桌,多2个人。
如果5个人一桌,多4个人。
如果7个人一桌,多6个人。
如果9个人一桌,多8个人。
如果11个人一桌,正好。
请问这屋里多少人
(10)有人想买几套餐具,到餐具店看了后,发现自己带的钱可以买21把叉子和21把勺子,或者28把小刀。如果他买的叉子,勺子,小刀数量不统一,就无法配成套,所以他必须买同样多的叉子,勺子,小刀,并且正好将身上的钱用完。如果你是这个人,你该怎么办?
(11)一个小偷被警查发现
警查就追小偷,小偷就跑
跑着着跑着,前面出现条河
这河宽12米,河在小偷和警查这面有颗树
树高12米,树上叶子都光了
小偷围着个围脖长6米
问小偷如何过河跑???
热心网友
时间:2022-04-24 15:12
话说某天一艘海盗船被天下砸下来的一头牛给击中了,5个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子?
大家把椰子全部采摘下来放在一起,但是天已经很晚了,所以就睡觉先.
晚上某个家伙悄悄滴起床,悄悄滴将椰子分成5份,结果发现多一个椰子,顺手就给了幸运的猴子,然后又悄悄滴藏了一份,然后把剩下滴椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
过了会儿,另一个家伙也悄悄滴起床,悄悄滴将剩下滴椰子分成5份,结果发现多一个椰子,顺手就又给了幸运的猴子,然后又悄悄的藏了一份,把剩下滴椰子混在一起放回原处,最后还是悄悄滴回去睡觉了.
又过了一会 ...
...
又过了一会 ...
总之5个家伙都起床过,都做了一样的事情 :blush;
早上大家都起床,各自心怀鬼胎的分椰子了,这个猴子还真不是一般的幸运,因为这次把椰子分成5分后居然还是多一个椰子,只好又给它了.
问题来了,这堆椰子最少有多少个?
网络中超难的75道逻辑题及答案http://ahstbzp.blog.163.com/blog/static/25954084200992034436570/
热心网友
时间:2022-04-24 17:53
很有意思啊,我刚刚参加完初中数学奥赛,其实大部分都是高中的知识,成绩不理想,看完答案*太简单了。我就挑其中的几道题给大家玩玩吧:
1:初一代数:因数分解:a^5+a+1
2:初二几何:用直观的几何图形表示勾股定理(后来才发现这是初中课本上证明勾股定理的现成例子,lz你还记得不?自觉啊,别去翻课本)
3:奥赛最后一题:1):初中几何:画2跳长度不等的线段,用简单直观的画图方法证明2线段上的点个数相等 2)用简单直观的画图方法证明2线段上的点的个数不相等3)请用简短的话语描述造成上述现象的原因
注:我考试时真的被这题难住了,只回答了3小题,因为线由点构成,而点是没有长短多少之分的,大概就是这个意思,也不知道有没有拿到分,您帮我回答下。
4:(算是高中的知识吧,其实初中生做也不难)工厂给客服量米的重量,米从10高的机器口自由下落掉到地秤的器皿里,关掉开关的瞬间米停止下落,秤保持最后一个读数。客服说:米下落击打在秤上,造成秤的读数偏大,认为吃亏了。厂家说:秤的读数没有包括正在空中自由下落米的重量,所以是厂家吃亏了。请分析谁的说法正确,试建立一个简单的物理模型分析,并得出正确的结论。(这题看似难,其实是奥数大题里面最简单的一道,呵呵,个人认为)
5:算了,等LZ回答了这几个再给几个超级难的,反正我是没法下手的,呵呵追问我试试:
1.因为a^5+a+1=0,没有整数根(用艾森斯坦判别法容易知道)
估计a²+a+1是它的一个因子,用多项式的除法可以得出
a^5+a+1
=(a²+a+1)(a³-a²+1)
2.图我记得,好像课本的封面就有,就是4个直角三角形拼在一起
3.这个要画图,我知道怎么画,这里不画了,第三问可以回答,当个数为无限的时候不能直接比较多少。
追答第一题算你对:a^5-a^2+a^2+a+1
第二题:知之为知之哦,这个回答呵呵,就是希望在你不记得的时候你怎么去做,你倒是干脆T回来了。万一课本上没有呢?
第三题:不知道你是否真的画出来了,你可否用语言描述下你的思路?看了答案真的很简单的
第四题:不要被“建立模型”四个字吓到了,其实就是设几个参数,比如出米速度什么的,用未知数代替更容易说明问题。其实还有第二问我省略了,就是如果加大出米速度,比如以一个初速度下落,谁会吃亏呢?
总之,LZ的回答并不能让人满意,回答很敷衍消极啊呵呵,那几个难题拿出来就没啥意思了
热心网友
时间:2022-04-24 20:51
你肯定解释不了的题!世界数学难题——哥尼斯堡七桥问题
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。 这就是哥尼斯堡七桥问题,一个著名的图论问题。
声明!不能看答案!
还有很多!
1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛–弗伦克尔集合*理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛–伦克尔集合*理是彼此独立的。因此,连续统假设不能在策梅洛–弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。
2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。
3.两个等底等高四面体的体积相等问题。问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。
4.两点间以直线为距离最短线问题。此问题提得过于一般。满足此性质的几何学很多,因而需增加某些*条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。
5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、庞德里亚金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。
6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率*理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。
7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0,1,和任意代数无理数β证明了αβ的超越性。
8.素数问题。包括黎曼猜想、哥德*猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德*猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。
9.在任意数域中证明最一般的互反律。该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。
10.丢番图方程的可解性。能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。
11.系数为任意代数数的二次型。H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。
12.将阿贝尔域上的克罗克定理推广到任意的代数有理域上去这一问题只有一些零星的结果,离彻底解决还相差很远。
13.不可能用只有两个变数的函数解一般的七次方程。七次方程的根依赖于3个参数a、b、c,即x=x(a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。
14.证明某类完备函数系的有限性。这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。
15.舒伯特计数演算的严格基础一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。
16.代数曲线和代数曲线面的拓扑问题这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。
17.半正定形式的平方和表示。一个实系数n元多项式对一切数组(x1,x2,…,xn)都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。
18.用全等多面体构造空间。由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。
19.正则变分问题的解是否一定解析。对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。
20.一般边值问题这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。
21.具有给定单值群的线性微分方程解的存在性证明。已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。
22.由自守函数构成的解析函数的单值化。它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。
23.变分法的进一步发展出。这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。
有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板. 后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们, 服务生偷偷藏起了2元, 然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱, 3个人每人9元,3 X 9 = 27 元 + 服务生藏起的2元=29元,还有一元钱去了哪里???此题在新西兰面试的时候曾引起巨大反响. 你知道答案吗?
“活跃天数”的计算
“活跃天”指的是如果用户当天使用QQ超过一定的时间,我们就认为用户这一天是活跃的,会为其活跃天数加上一天。
我们从统计数据出发,为“活跃天数”的计算做如下定义:
当天(0:00-23:59)使用QQ在2小时(及2小时以上),算用户当天为活跃天,为其活跃天数累积1天。
当天(0:00-23:59)使用QQ在0.5小时至2小时,为其活跃天数累积0.5天。
当天(0:00-23:59)使用QQ在0.5小时以下的,不为其累积活跃天数
声明:这是最难数学题的总结
热心网友
时间:2022-04-25 00:06
很不错的一道题,附有答案
求n!+1=(m!-1)^2的正整数解.
原方程组变形,则n!=m!(m!-1),
∴m≥3且n>m,原方程又可变形为
n(n-1)...(m+1)=m!-2.
注意到m≥3,故m!能被3整除,
而上式左边连续正整数的积,
依“3个连续正整数中必有3的倍数”知,
上式左边至多是两个正整数的积,
∴n-m≤2.
若n-m=2,
则有m+1=m!-2,
故m!=m+3≤2m,
∴(m-1)!≤2,
即m≤3.
若n-m=2,
则有(m+2)(m+1)=m!-2,
故m!=m^2+3m+4≤4m(m-1),
∴(m-2)!≤4,
即m≤4.
综上,可知:m=3或m=4.
经检验可知原方程有唯一整数解:
m=3,n=4.
热心网友
时间:2022-04-25 03:37
①,一元钱可以买一瓶汽水,两个空瓶可以换一瓶汽水,如果给你20元,你最多能买多少瓶?
②甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
③修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
热心网友
时间:2022-04-25 07:25
甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇。东西两地相距多少千米?
小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有
1.今年的产值为121万元,比去年增长66万元,今年比去年增长了百分之几?
2.一座工厂,用了102万元,比计划节省了15%,节省了多少万元?
3.苹果,卖出了40%,剩下的比卖出的多5千克,这筐苹果有多少千克?
4含盐14%的盐水20千克中,加入了5克盐,这时盐的含水量是多少?
5.一本故事书,第一天读了它的20%,第二天读了余下的3/8,还剩下75页没读,这本故事书有多少页?
热心网友
时间:2022-04-25 11:30
爱因斯坦在20世纪初出的这个题目。他说世界上有98%的人答不出来。某家公司在面试应聘者时借用了爱因斯坦的这个IQ题,考查应聘者的IQ,如果是你,拿到了这样的笔试题目,你能做得出来吗?(我做不出……)
1、在一条街上,有5座房子,喷了5种颜色。
2、每个房里住着不同国籍的人
3、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物
问题是:谁养鱼?
提示:
1、英国人住红色房子
2、瑞典人养狗
3、丹麦人喝茶
4、绿色房子在白色房子左面
5、绿色房子主人喝咖啡
6、抽Pall Mall 香烟的人养鸟
7、*房子主人抽Dunhill 香烟
8、住在中间房子的人喝牛奶
9、 挪威人住第一间房
10、抽Blends香烟的人住在养猫的人隔壁
11、养马的人住抽Dunhill 香烟的人隔壁
12、抽Blue Master的人喝啤酒
13、德国人抽Prince香烟
14、挪威人住蓝色房子隔壁
15、抽Blends香烟的人有一个喝水的邻居
热心网友
时间:2022-04-25 15:51
有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板. 后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们, 服务生偷偷藏起了2元, 然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱, 3个人每人9元,3 X 9 = 27 元 + 服务生藏起的2元=29元,还有一元钱去了哪里???
*想为希望小学五年(2)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多36元。用248元恰好可以买到3个书包个4本词典。
(1)每个书包和每本词典的价格各是多少元?
(2)*计划用1500元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后。余下不少于250元且不超过360元得钱购买体育用品。共有哪几种购买书包和词典的方案?
一个长方体的体积是800立方厘米,一个面的面积是70立方厘米。问与那个面垂直的棱是什么
热心网友
时间:2022-04-25 20:29
大家看着玩吧!
乌龟和兔子赛跑的原版,是由于兔子过于贪玩乌龟胜出了。但依兔子的速度可以远远超过乌龟的。而现在有一总长此4.2km的路程,兔子每小时跑20km,乌龟每小时跑3km。不停地跑。但兔子却边跑边玩,它先跑1分钟,然后玩15分钟。又跑2分钟,再玩15分钟……那么,先到终点的比后到终点的要快多少分钟?
有六个小朋友去玩具店里买玩具,他们分别带了14元、17元、18元、21元、25元、37元钱,到了玩具店里,他们都看中了一款游戏机,一看定价,这六个人都发现自己所带的钱不够,但是其中有3个人的钱凑在一起正好可买2台,除去这3个人,有2人的钱凑在一起恰好能买1台。那么,这款游戏机的价格是多少呢?
热心网友
时间:2022-04-26 01:24
.甲、乙两队学生从相距18km的两地同时出发,相向而行。一个同学骑车以14km/时的速度,在两队之间联络。甲队5km/时,乙队4km/时。两队相遇时,骑车的同学共行多少千米
修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?