发布网友 发布时间:2022-04-26 19:24
共1个回答
热心网友 时间:2023-10-23 18:41
使等式a-b=ab+1成立的一对有理数a,b为共生有理数对,记为(a,b)。数学上,有理数是一个整数a和一个正整数b的比。有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。
将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数由来:
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。