问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

经典小升初奥数题和答案

发布网友 发布时间:2022-04-26 16:18

我来回答

4个回答

懂视网 时间:2022-06-08 05:16

奥数题100道及答案,一起来了解一下吧。

题目: 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?

答案:妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为72÷(1+4+4)=8(岁),妈妈的年龄是8×4=32(岁),爸爸和妈妈同岁为32岁.

题目:甲乙丙丁各自参加篮球、排球、足球和象棋。现在知道:(1)甲的身材比排球运动员高。(2)几年前,丁由于事故,失去了双腿。(3)足球运动员比丙和篮球运动员都矮。猜猜就甲乙丙丁各参加什么项目?

答案:由(2)可知丁肯定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只能是篮球运动员,由(3)可知丙不是足球运动员,那么只能是排球运动员了,剩下的乙就是足球运动员了。

题目:联欢会上,要把10个水果装在6个袋子里,要求每个袋子中装的水果都是双数,而且水果和袋子都不剩。应该怎样装?

答案:每个袋子放2个,再把5个袋子装在最后一个袋子里

题目:淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?

答案:比原来少的钱就是花掉的钱,小淘气一共花了:56+128=184(元),所以比原来的钱少了184元

题目:兄弟两人去钓鱼,一共钓了23条,哥哥钓的鱼比弟弟的三倍还多3条,哥哥弟弟各钓了多少条?

答案:23-3=20

20/(3+1)=5条

弟弟钓了5条

哥哥钓了5*3+3=18条。

题目:某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?

答案:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆.  7=1+2+4   9=1+8  10=2+8  13=1+4+8  14=2+4+8  15=1+2+4+8 外星人可按以上方式付款.

题目:盘子里有香蕉、苹果、桔子三种水果。小刚、小林、小红各拿了一个不同的水果。小刚说:“每人只吃一种水果,我不吃桔子。”小林说:“我既不吃苹果,也不吃桔子。”( )拿的香蕉,( )拿的桔子,( )拿的苹果。

答案:(小林)拿的香蕉,(小红)拿的桔子,(小刚)拿的苹果。

题目:有一个四位数,各位数字之和等于34。符合这个条件的四位数有哪些?

答案:8899、8989、8998、9889、9898、9988、7999、9799、9979、9997

题目:已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

答案:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。   解一把椅子的价钱   288÷(10-1)=32(元)   一张桌子的价钱   32×10=320(元)   答一张桌子320元,一把椅子32元。

题目:要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?

答案:能.最后一个苹果留在篮子里不拿出来,把它们一同送给一个孩子.这是因为“篮子里留下一个苹果和每个孩子分得一个苹果”这两个条件并不矛盾

题目:小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4 条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2 倍,小鱼缸里原来有鱼多少条?

答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4 条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8 条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2 倍,也就是比小鱼缸里的金鱼条数多1 倍,而这1 倍数正好是8 条。所以,原来小鱼缸里的鱼的条数是12条。

题目:一个筐里装着 52个苹果,另一个筐里装着一些梨。如果从梨筐里取走18个梨,那么梨就比苹果少12个。原来梨筐里有多少个梨?

答案:有几种思考方法  (1)根据取走 18个梨后,梨比苹果少 12个,先求出梨筐里现有梨 52-12=40(个),再求出原有梨(52-12)+18=58(个)。  (2)根据取走18个梨后梨比苹果少 12个,我们设想"少取 12个"梨,则现有的梨和苹果一样多,都是52个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨  52+(18-12)=58(个)。  (3)根据取走 18个梨后梨比苹果少 12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。  这样一来,现有苹果就比原来的梨多了12个。由此可求出原有(52+18)-12=58(个)。

题目:小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2倍,小鱼缸里原来有鱼多少条?

答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2倍,也就是比小鱼缸里的金鱼条数多1倍,而这1倍数正好是8条。所以,原来小鱼缸里的鱼的条数是12条。

题目:有人以为6是个吉利数字,他们得到的东西的数量都能要够用“6”表示才好.现有150块糖要分发给5个人,请你帮助想一个吉利的分糖方案.

答案:150=66+66+6+6+6

题目:小兵和小军用玩具枪做打靶游戏,见下图所示.他们每人打了两发子弹.小兵共打中6环,小军共打中5环.又知没有哪两发子弹打到同一环带内,并且弹无虚发.你知道他俩打中的都是哪几环吗?

答案:小兵打中的是1环和5环,小军打中的是2环和3环.

题目:红红有3件上衣,2条裙子,一共有几种穿法?

答案:6

题目:把写着1到100这100个号码的牌子,像下面这样一次分给四个人,你知道第73号牌子会落在谁的手里吗?

答案:案观察会发现分给小明的牌子号码是1,5,9,13···号码除以4余1;分给小英的牌子号码是2,6,10,14···除以4余2;分给小芳的牌子号码是3,7,11···除以4余3;分给小军的牌子号码是4,8,12···除以4余0;(整除)因此,试用4除73看看余几?73÷4=18···余1.可见73号牌子会落到小明手里。

题目:4个男同学和3个女同学进行乒乓球单打比赛,如果每个男同学和每个女同学都打1盘,一共要打几盘?

答案:12

题目:1、从左下角的2开始,依次在数字间填上“+”或“-”,使最后结果等于7 2 4 6 9 5 1 = 72、学校小会议室,第一排有4个座位,以后每一排都比前一排多2个座位,最后一排有18个座位,这个会议室一共有多少个座位?

答案:案1、从左下角的2开始,依次在数字间填上“+”或“-”,使最后结果等于72 4 6 9 5 1=72 + 4 + 6 – 9 + 5 – 1 = 72、学校小会议室,第一排有4个座位,以后每一排都比前一排多2个座位,最后一排有18个座位,这个会议室一共有多少个座位?(18—4)÷2+1=8(排)(18+4)×8÷2=88(个)

题目:中午放学的时候,还在下雨,大家都盼着晴天.小明对小英说:“已经连续三天下雨了,你说再过36小时会出太阳吗?”小朋友你说呢?

答案:不会。因为是晚上。

题目:根据规律填数 (1)2、4、6、8、( )、( ) (2)1、4、7、( )、( ) (3)30、25、20、( )、( )

答案:案(1) 在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12; (2) 在这个数列里,后一个比前一个数多3,根据这个规律,括号里里应该填10、13; (3) 在这个数列里,前一个数比后一个数多5,根据这个规律,括号里应填15、10。

题目:20只小动物排一排,从左往右数第16只是小兔,从右往左数第10只是小鹿,求从小鹿数到小兔,一共有几只小动物?

答案:因为小兔的右边还有20-16=4只动物,小鹿的左边还有20-10=10 只动物,所以从小鹿到小兔一共有20-4 -10=6只动物

题目:下面两个图形能拼成一个长方体吗?

答案:左边图形第一层有6个小正方体,第二层有3个小正方体,要想拼成长方体,第二层差了3个小正方体,我们可以用右图中右边的三个小正方体补上,这样只剩下了右图中左边的4个小正方体,可现在需要在左图的第三层放6个小正方体才可以拼成一个长方体,所以这两个图形不能拼成一个长方体。

题目:用○、★、△代表三个数,有○+○+○=15,★+★+★=12,△+△+△=18,○+★+△=( )

答案:上面算式中的○、★、△分别代表三个数,根据三个相同加数的和分别是15、12、18,可知○=5,★=4,△=6,又5+4+6=15,所以( )内应填15。

题目:1写到99,共写了多少个数字"1"?

答案:分类计算“1”出现在个位上的数有1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有10,11,12,13,14,15,16,17,18,19共10个;共计10+10=20个.

题目:小雷、二雷、大雷去称体重,大雷和小雷一起称是50千克,小雷和二雷一起称是49千克,三个人一起称是76千克。小雷的体重是( )千克。

答案:要用比较的方法,要抓住"三个人一起称76千克"这个重要条件.又知"大雷和小雷一起称50千克",这样就可先求出二雷的体重,或者根据"小雷和中雷一起称是49千克"可求出小雷的体重。   二雷的体重76-50=26(千克)   小雷的体重49-26=23(千克)   大雷的体重50-23=27(千克)

题目:一只小兔从起点向前跳了5个格,接着向后跳了4个格;然后又向前跳了6个格,再向后跳了10个格,最后停下.这时小兔停在起点的前面还是后面?距起点几个格?

答案:第一步,在前面的第五格。第二步,向后跳4个格,5-4=1,在前面第一个格。第三步,又向前跳6个格,1+6=7,在前面第七个格。第四步,又向后跳10个格,10-7=3,在后面第三个格。

题目:冬冬到文化用品商店买铅笔和本子,全部的钱可以买6支铅笔和11本本子,或者8支铅笔和7本本子,如果全部买本子,可以买( )本。

答案:6支铅笔+11本本子所用的钱=8支铅笔+7本本子所用的钱,等式两边都减去6支铅笔和7本本子,得4本本子所用的钱=2支铅笔用的钱数,即1支铅笔的钱数=2本本子的钱数,冬冬的钱如果全都买本子,可以买2×6+11=23(本)。

题目:如果20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用1头牛可换多少只兔子?

答案:120只兔

题目:一名渔夫打了15 条鱼,渔夫对他的妻子说:"我要分三批吃它们。不过吃以前把它们排好队,然后编上号码,我从头一条开始吃,隔一个吃掉一个,也就是:我第一次吃掉排在第 1,3,5,7,9,11,13, 15 号位置的鱼,剩下的不动,第二次还是从头一条吃起,隔一个吃一个;第三次也是照这个办法吃。但把最后剩下的一个放了。"聪明的小朋友们,你们知道第几号鱼被放生了吗?

答案:8号

题目:商店新进6盒小皮球,连续5天,每天都卖出8个。服务员重新整理一下,剩下的小皮球正好装满2盒。原来每盒有几个小皮球?

答案:“连续5天,每天都卖出8个”则一共卖出5×8=40(个)。“新进6盒小皮球”,“剩下的正好装满2盒”,则卖出6-2=4(盒);卖出40个,卖出4盒,则每盒有40÷4=10(个)原来每盒有10个小皮球。

题目:1、8、1、10、1、12、( )( )

答案:1、8、1、10、1、12、(1)(14)

题目:30个小朋友排队去参观,平均分成2队小华排在第一队,她的前面有3人,她的后面有几人?

答案:案每个小队有30÷2=15人,所以小华后面有15-3-1=11(人)

题目:张阿姨和李阿姨合买了一筐苹果,连筐一共是20公斤.张阿姨从筐中取走10公斤,空筐重1公斤.问李阿姨买到苹果多少公斤?合多少克?

答案:案李阿姨买到苹果 20-10-1=9(公斤) 1000克×9=9000克 答李阿姨买到苹果9公斤,合9000克.

题目:有三堆水果,每堆水果同样重。第一堆:1个西瓜、1个菠萝、5个苹果。第二堆:3个菠萝、11个苹果。第三堆:1个西瓜、8个苹果。每个苹果重150克,每个菠萝重( )克。

答案:观察第一堆和第三堆可以看出1个菠萝=3个苹果,所以每个菠萝重150×3=450克。

题目:1只鹅的重量+3只鸡的重量=10只鸭的重量 8只鸡的重量=16只鸭的重量 1只鹅的重量=( )只鸭的重量 1只鹅的重量=( )只鸡

答案:(用代入法思考)由第二个等式可知"1只鸡=2只鸭"。代入第一个等式得"1只鹅+6只鸭=10只鸭",所以1只鹅=4只鸭,再与1只鸡=2只鸭这一条件结合,得出1只鹅=2只鸡。

题目:认真观察,找规律填数

答案:规律是每个图形里的3个数相加的和都是12.

题目:用0,5,6三张卡片可以构成多少个数?

答案:个位数0,5,6,9(6可以翻转),有4种;两位数50,56,59,60,65,90,95有7种;三位数先定百位506,560,605,650,同时由于是卡片,所以6翻转后变成9,所以还可以是509.590.950.905.有4种;共有4+7+4=15(种)

题目:小梅从1楼走到4楼需要3分钟,那么用同样的速度,他从1楼走到7楼需要( )分钟.

答案:小明从1楼走到4楼,实际只走了三个间隔的台阶,走三个间隔的台阶需要3分钟,那么走一个间隔的台阶需要1分钟.现在他从1楼走到7楼要走6个间隔的台阶,一共需要6分钟.

题目:有一天,大熊老师在黑板上写了一列数字,然后他停下来,让小兔妮妮和熊猫冰冰来猜一猜. ⑴ 第25个数是几?⑵ 这25个数的和是多少?1,2,3,2,3,4,3,4,5,4,5,6,……

答案:9,141

题目:一根木材长14米,木工师傅把它锯成2米长的小段,要锯几次?

答案:14里面有几个2就是能几段14/2=7(段),每锯一次得1段,最后一次能得到2段。因些,锯的次数=段数-1=6(次)

题目:甲、乙、丙各是多少?(1)甲+甲=甲×甲甲是多少?(2)乙×乙=乙÷乙乙是多少?(3)丙+丙=丙-丙丙是多少?

答案:(1)2+2=2×2 甲=2 或甲=0(2)1×1=1÷1 乙=1 (3)0+0=0-0 丙=0

题目:有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

答案:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。  解乙仓存粮  (32.5×2+5)÷(4+1)  =(65+5)÷5  =70÷5  =14(吨)  甲仓存粮  14×4-5  =56-5  =51(吨)  答甲仓存粮51吨,乙仓存粮14吨。

题目:在下面由火柴棍摆成的算式中,添上或去掉一根火柴棍,使算式成立.

答案:(1)添上一根火柴,把 12 变成 72。(2)去掉“+”中的一根火柴变为“-”。

题目:小马、小立和小雨三人从郊区一起打车到市区去办事,坐车前三人商量好一样多的车费。到达市中心后,小马拿出10元,小雨拿出14元,小立还没来得及拿钱,司机说:“钱够了”,那么,小立应分别给小马和小雨各多少钱,三人出的车费才一样多?

答案:车费总数10+14=24(元) 平均每人应付的车费24/3=8(元) 小立应给小马的钱10-8=2(元) 小立应给小雨的钱14-8=6(元)

题目:在一次数学考试中,小玲和小军的成绩加起来是195分,小玲和小方的成绩加起来是198分,小军和小方的成绩加起来是193分.问他们三人各得多少分?

答案:列出下列等式   小玲+小军=195 (1)   小玲+小方=198 (2)   小军+小方=193 (3)   将三个等式的左边和右边各项分别相加,得   2×(小玲+小军+小方)=586   即小玲+小军+小方=293 (4)   由(4)式-(1)式得   小方=293-195=98   由(4)式-(2)式得   小军=293-198=95   由(4)式-(3)式得   小玲=293-193=100   可见小方得98分,小军得95分,小玲得100分.

题目:一桶食油连桶共重100千克,用去一半油后,连桶还有60千克,原来桶里有多少千克食油?油桶重多少千克?

答案:100千克变60千克,少了100-60=40千克,这是一半油的重量,所以全部油重80千克,油桶重100-80=20千克。

题目:一张纸片,第一次将它撕成4片,以后每次在纸片中取一片,并将它撕成4片,这样撕10次,共有______片纸片。

答案:每次撕一次纸片,创造了四张,减少了一张,即创造了3张,撕10次,共有30张,加上原来的一张,共有31张。

题目:把下图分割成 4 块形状大小相同的图形,使每个图形中都含有一只小猴,你能做到吗?

答案:切成 L 状即可,答案不唯一

题目:△ + □ = 9; △ + △ + □ + □ + □ = 25; △ = ( ) ; □ = ( )

答案:因为△ + □ = 9,我们就可把△+△+□+□+□=25中的△+□换成9,变成9+△+□+□=25;再替换一次,变成9+9+□=25,可以得出□=7;再根据△+□=9和求出的□=7,可以求出△=2。

题目:下列算式中,□,○,△,☆,*各代表什么数? (1)□+5=13-6; (2)28-○=15+7; (3)3×△=54; (4)☆÷3=87; (5)56÷*=7。

答案:(1)由加法运算规则知,□=13-6-5=2; (2)由减法运算规则知,○=28-(15+7)=6; (3)由乘法运算规则知,△=54÷3=18; (4)由除法运算规则知,☆=87×3=261; (5)由除法运算规则知,*=56÷7=8。

题目:1、长颈鹿问小羊:"一根竹竿两个头,二根竹竿四个头,四根半竹竿几个头?"小羊高兴地回九个头"。小羊回答得对吗?为什么?

答案:小羊回答的不正确,因为就算半根竹竿也有两个头,所以四根半竹竿有10个头。

题目:□+□+□+□+□=30在上面的□中填上5个连续的自然数,使等式成立。

答案:4+5+6+7+8=30

题目:顺序观察下面图形,并按其变化规律在“?”处填上合适的图形.

答案:每个图逐个加三个圆点,而且是按照加实心三个、空心三个的顺序递加的。

题目:两个母亲给他们的两个女儿一些钱,一个给她女儿120元,一个给她女儿100元,当两个女儿计算她们的钱时,总共只有120元。小朋友,你知道为什么不是220元,却只有120元呢?

答案:因为只有3个人,外祖母、母亲和女儿。

题目:某数加上5,乘以5,减去5,除以5,其结果等于5。求这个数。

答案:从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法。从最后一步推起,“除以5,其结果等于5”可以求出被除数5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1。 5×5=25 25+5=30 30÷5=6 6-5=1 答所求的数为1。

题目:根据图中数字的规律,在最上边的空格中填上合适的数。

答案:64,每个数字是下面的两个数字之和

题目:两个整数之积为144,差为10,求这两个数。

答案:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来  1 2 3 4 6 8 9 12 

 144 72 48 36 24 18 16 12  可见其中差是10的两个数是8和18,这一对数即为所求。

题目:小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少?

答案:第20次喝水与第1次喝水之间有20-1=19(个)间隔,因为小狗每隔5分钟喝一次,所以到第20次喝水中间间隔的时间是19×5=95(分钟),也就是1个小时35分钟,所以小狗第20次喝水时时间是9时35分.

题目:100个和尚分100个馒头,大和尚每人分3个馒头,小和尚3人分1个馒头,恰好分完.问大和尚、小和尚各多少人?

答案:若是大和尚33人,就要分3×33=99个馒头,还剩100-99=1(个)馒头,分给3个小和尚,这样和尚总人数为33+3=36人,与已知有100个和尚不符,不对!大和尚的人数减少些.若是有30个大和尚,分3×30=90个馒头,还剩10个馒头,可以分给3×10=30个小和尚,这样和尚总数是30+30=60人.还必须减少大和尚的人数.若是有25个大和尚,分3×25=75个馒头,还剩100-75=25个馒头,可以分给3×25=75个小和尚.这样和尚总数是25+75=100人,所以答案是大和尚25人,小和尚75人.

题目:一本小人书共100 页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?

答案:从第1页到第9页,共9页,每页用1个铅字,共用1×9=9 (个);从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是9+180+3=192 (个)。

题目:一根粉笔有两个头,3跟半粉笔有几个头?

答案:2x4=8个 3根半粉笔有8个头

题目:小马虎在做加法题时,把个位上的3看成了5,把十位上的8看成了3,结果和是215,正确答案是( )

答案:正确的结果应该是215-2+50=263。

题目:找规律,在空格里填上合适的数

答案:这道题可以有多种填法,可以从大到小填数,也可以从小到大填数,两个数之间可以相差1,也可以相差2.3.4或5

题目:烙熟一块饼需要4分钟,每面2分钟。一只锅只能同时烙2块饼,要烙3块饼,最少需要几分钟?

答案:A饼和B饼同时下锅,用2分钟烙完一面后,取出A饼,放入C饼,同时B饼翻身,再烙2分钟,这时B饼已熟,起锅,放入A饼,烙其剩下的一面,同时C饼翻身,一起再烙2分钟。

题目:两个整数之积为144,差为10,求这两个数。

答案:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来  可见其中差是10的两个数是8和18,这一对数即为所求。

题目:有两根绳子,甲绳比乙绳的2倍多4米,比乙绳的3倍少6米,两根绳子各长多少米?

答案:乙10 (米) 甲24 (米)

题目:5个人到水龙头接水,水龙头注满水瓶的时间分别是5分钟、3分钟、4分钟、2分钟、1分钟。现在只有一个水龙头可用。问怎样安排这5个人的接水次序,可使他们总的等候时间最短?这个最短时间是多少?

答案:可以按1分钟、2分钟、3分钟、4分钟、5分钟的顺序打水,这样每个人排队和打水时间的总和最小,最小值是1×5+2×4+3×3+4×2+5×1=35 (分)

题目:早上妈妈用平底锅给小明煎薄饼吃,平底锅里每次能同时放两个饼.煎熟1个饼需要2分钟,(正、反面各需1分钟),妈妈要煎5个饼至少需要几分钟?煎6个饼呢?

答案:5个比3个饼多2个饼,多的这2个饼,需要2分钟,这其中它们100%使用了平底锅,没让它闲着,所以5个饼最少要3+2=5(分)钟.煎6个饼2个2个的煎,其中都100%使用了平底锅,所以最短时间为2+2+2=6 (分)钟.

如下图,一只狗在A点,小峰在B点,他们互相朝对方前进,小峰一分钟走5米,狗每分钟跑20米,狗遇到小峰后又往回跑到A点,再朝小峰跑,遇到后再跑回A点,,,,,,请问小峰走了5分钟的时候,狗跑了多少米呢?A——————————B

答案:跑了20×5=100(米)

以上就是小编今天的分享了,希望可以帮助到大家。

热心网友 时间:2022-06-08 02:24

小升高    数学奥数   91好课  超越篇视频课程   百度网盘    

链接: https://pan.baidu.com/s/1XJy8rvhzoCVdH0aHEilB2g

提取码: icig 复制这段内容后打开百度网盘手机App,操作更方便哦     

若资源有问题欢迎追问~    

热心网友 时间:2022-06-08 03:42

问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?

这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

问题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:

后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。

甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米

小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...

1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
数出图中含有"*"号的长方形个数(含一个或二个都可以)
* * *
第1题儿子算出来是8+16+8=32个,答案却是30个.
第2题儿子算出来是(12+24+24+12)*2,然后减去2*重复的,9+18+9=36,答案说应该减去48个,为什么呢?
一、填空题
1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.
7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?
8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?

二、解答题
11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?

———————————————答 案——————————————————————

一、填空题
120米
102米
17x米
20x米




1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:

设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.

2. 画段图如下:

90米

10x

设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.



快车


慢车


快车


慢车
3. (1)车头相齐,同时同方向行进,画线段图如下:

则快车长:18×12-10×12=96(米)
(2)车尾相齐,同时同方向行进,画线段图如下:


快车


慢车


快车


慢车

则慢车长:18×9-10×9=72(米)

4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)

5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②

解得

7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②

①-②,得:

火车离开乙后两人相遇时间为:
(秒) (分).

8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).

9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.

10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.

二、解答题
11. 1034÷(20-18)=91(秒)

12. 182÷(20-18)=91(秒)

13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.

14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.

平均数问题

1. 蔡琛在期末考试中,*、语文、数学、英语、生物五科的平均分是 89分.*、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.*、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?

2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?

3. 已知八个连续奇数的和是144,求这八个连续奇数。

4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?

5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?

等差数列

1、下面是按规律排列的一串数,问其中的第1995项是多少?

解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984

2、在从1开始的自然数中,第100个不能被3除尽的数是多少?

解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.

3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?

解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。

4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425

5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张*的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张*卡片,已知这两张红色的卡片上写的数分别是19和97,求那张*卡片上所写的数。

解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。

6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?

解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。

7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?

解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。

8、有19个算式:

那么第19个等式左、右两边的结果是多少?

解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。

9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?

解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?

解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。

12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?

解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。

13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?

解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫�敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。

14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?

解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。

周期问题

基础练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2) 第39个棋子是(黑子)。
2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。
3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。
……
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。
※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?(37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
答案

1、(1)□。
(2)黑子。
2、大。
3、男同学。
4、第20个数字是(3),这20个数的和是(58)。
5、
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、(日)。(二)。(日)。
※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
提高练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2)○□◎○□◎○□◎○…… 第25个图形是(○)。
2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。
3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。
4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。

※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)
答案
1、(1)□。
(2)○。
2、绿旗。
3、爱。
4、(1)男同学。
5、第20个数字是(3),这20个数的和是(58)。
6、(日)。(二)。(日)。
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)

热心网友 时间:2022-06-08 05:16

过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟? 分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。 总路程: (米) 通过时间: (分钟) 答:这列火车通过长江大桥需要17.1分钟。 2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米? 分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。 总路程: (米) 火车速度: (米) 答:这列火车每秒行30米。 3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米? 分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。 总路程: 山洞长: (米)答:这个山洞长60米。和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍) (2)秦奋的年龄:40÷5=8岁 (3)妈妈的年龄:8×4=32岁 综合:40÷(4+1)=8岁 8×4=32岁 为了保证此题的正确,验证 (1)8+32=40岁 (2)32÷8=4(倍)计算结果符合条件,所以解题正确。2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。甲乙飞机的速度分别每小时行800千米、400千米。3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么? (2)要想求哥哥给弟弟多少本课外书,需要知道什么条件? (3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍? 思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。 (1)兄弟俩共有课外书的数量是20+25=45。 (2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。 (3)哥哥剩下的课外书的本数是45÷3=15。 (4)哥哥给弟弟课外书的本数是25-15=10。 试着列出综合算式:4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。 甲库原存粮130吨,乙库原存粮40吨。列方程组解应用题(一)1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。 两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数 B制出的盒身数×2=制出的盒底数用86张白铁皮做盒身,64张白铁皮做盒底。奇数与偶数(一)其实,在日常生活中同学们就已经接触了很多的奇数、偶数。 凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。 因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。 奇数和偶数有许多性质,常用的有: 性质1 两个偶数的和或者差仍然是偶数。 例如:8+4=12,8-4=4等。 两个奇数的和或差也是偶数。 例如:9+3=12,9-3=6等。 奇数与偶数的和或差是奇数。 例如:9+4=13,9-4=5等。 单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。 性质2 奇数与奇数的积是奇数。 偶数与整数的积是偶数。 性质3 任何一个奇数一定不等于任何一个偶数。1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。 5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。 所以无论他翻动多少次,都不能使5张牌画面都向下。2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。 如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。 奥赛专题 -- 称球问题例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。 第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。 第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则 (1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。 (2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。 (3)若A<B,类似于A>B的情况,可分析得出结论。奥赛专题 -- 抽屉原理【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 打字不容易,请采纳!
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
隐私文件夹怎么加密?隐私文件夹加密方法 登位怎么造句 放言怎么造句 07式陆军迷彩的领章怎么分期? 骨头有积液怎么办 右膝关节,胫骨上段骨髓水肿,膝关节腔少量积液。这个怎么养啊。谢谢好心... 骨髓水肿关节积液怎么治疗 小孩咳嗽厉害老不好怎么办 小儿咳嗽一直不好怎么办 投币咖啡机使用说明 写给军人的英语感谢信 推荐一些好的网站 退伍老兵慰问感谢词 推荐几个好的网站? 我弟弟去当兵了·部队给家里来了一封慰问信!我想给回下感谢信该怎么回~ 推荐我几个比较好的网址大全,网址导航站 08年的新兵,要写封感谢信给部队,谁来提供些文章。 感谢部队军人拾金不昧的感谢信 退伍培训军人写给新东方烹饪学校老师的一封感谢信 部队遗属怎样给部队战友写捐款感谢信 给部队的感谢信 我是带病退伍军人现以亨受到待遇我想送军人事务一封感谢信怎么写 部队给家属单位的感谢信 给部队领导的感谢信 给一位军人的感谢信 写给部队班长的感谢信怎么写? 给部队排长和班长写感谢信怎么写 写给地方部队的感谢信,大概范本就可以了。别的内容我自己补。加急加急。我只要范本。废话别说。 怎样写给部队领导一感谢信 向部队感谢信怎么写? 推荐有趣的网站 小升初奥数题解答 小升初奥数题及答案 小升初奥数题 小升初奥数题(急!) 对于建站有什么好的网站推荐一下 求小学阶段经典奥数题(“小升初”可能会考到的,谢谢) 推荐几个推荐好书的网站! 小升初经典奥数题有些什么?要最容易考的。 小升初超难奥数题10道以上要特别特别难得带不带答案无所谓初一上学期的也可以,我在冲刺!@#¥%……&*~: 小升初奥数 浓度问题 求小学升初中数学必考奥数题 小学奥数题精选题目及答案 问一些小升初奥数题 求解小学奥数 小升初奥数类型 就要小升初了,但是数学考试里有奥数题(占得分值很多),我对奥数一窍不通,该怎么办? 瞿颖吴彦祖什么关系 瞿颖嫁人了吗?她和吴彦祖什么关系 吴彦祖瞿颖什么关系