发布网友 发布时间:2022-04-26 17:33
共5个回答
懂视网 时间:2022-08-14 12:27
1、勾股之学出自《周髀算经》。
2、公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
3、公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
4、在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
热心网友 时间:2024-11-18 13:58
最早发现"勾三股四弦五"这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处。勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。
拓展:
美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前十一世纪,我国周朝数学家商高就提出“勾三、股四、弦五”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为“勾股定理”,也有人称“商高定理”。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为“毕达哥拉斯定理”。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
热心网友 时间:2024-11-18 13:53
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
拓展资料按时间来算应该中国最早发现的。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?"
商高回答说:"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的。"
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。
热心网友 时间:2024-11-18 13:57
其他人回答都是所答非所问。勾股定理 勾股定理,不是只用一组数据就是证明出了定理,得有逻辑推导才叫定理。证明勾股定理的是毕达哥拉斯,中国人只是稍早出现345的勾股数,并没有给出证明。而在6000年前的古埃及就使用勾股数了,但是同样只是几组数而已。毕达哥拉斯才是完成勾股定理的第一人。热心网友 时间:2024-11-18 13:58
事实上我国商朝时由商高最早发现勾股定理,但一直不能证明。后来被古希腊数学家毕达哥拉斯证明。所以传统上都认为是古希腊数学家毕达哥拉斯发现的。热心网友 时间:2024-11-18 13:55
毕氏定理