『紧急』简单的高一数学题,我蠢不会做!~~
发布网友
发布时间:2022-04-26 17:39
我来回答
共2个回答
热心网友
时间:2023-10-18 06:00
曲线变形得到x^2+(y-1)^2=2^2(y>=1),即是一个以(0,1)点为圆心,2为半径的上半圆.直线方程可以知道直线肯定过(2,4)点.
题目要求曲线和直线有2个不同的交点,那么就是过(2,4)点做上半圆一条切线,以及,连接圆上的点(-2,1)的两条直线,这两条直线之间的过(2,4)的直线的斜率就是k的范围.
很容易求得过(2,4)和(-2,1)的直线斜率为3/4
切线的斜率,先联立直线方程和曲线方程,将y=k(x-2)+4带入曲线方程,整理得到x的二次方程:(k^2+1)x^2-(4k^2+6k)x+(2k-3)^2-4=0,那么这个方程只有一个根,用求根公式(4k^2+6k)^2-4(k^2+1)((2k-3)^2-4)=0,整理得到48k-20=0,这个方程看上去是4次的,实际上很多项都消掉了,实际上是个一次的方程.k=5/12
因此k的范围是(5/12,3/4]
呃.补充下啊,方法应该就是这样的,计算上可能会出错啊,偶已经困得不行了...楼主要是是作业的话,最好验证一下计算..不过,看答案感觉应该没算错...
热心网友
时间:2023-10-18 06:01
解:
因为直线y=k(x-2)+4恒过点(2,4),
且方程y=1+√(4-x^2)转化可成:
M:x^2 + (y-1)^2=4,且(-2<=x<=2)
所以即求过(2,4)的直线与圆M的交点
所以过(2,4)的直线与M相切的直线可知:
|-1-2k+4|/√(k^2+1)=2
可得:k=5/12
又可知K不存在也相切
所以:K>5/12有两个交点