细菌有哪些特点?
发布网友
发布时间:2022-04-26 20:07
我来回答
共5个回答
懂视网
时间:2023-01-17 07:32
1、细菌主要由细胞膜、细胞质、核质体等部分构成,有的细菌还有荚膜、鞭毛、菌毛等特殊结构。细胞核不成形。
2、细菌的个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下看到它们。绝大多数细菌的直径大小在0.5~5μm之间。
3、细菌一般是单细胞,细胞结构简单,缺乏细胞核、细胞骨架以及膜状胞器,例如线粒体和叶绿体。基于这些特征,细菌属于原核生物(Prokaryota)。
4、细菌广泛分布于土壤和水中,或者与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。此外,也有部分种类分布在极端的环境中,例如温泉,甚至是放射性废弃物中,它们被归类为嗜极生物。
5、细菌的营养方式有自养及异养,其中异营的腐生细菌是生态系中重要的分解者,使碳循环能顺利进行。部分细菌会进行固氮作用,使氮元素得以转换为生物能利用的形式。
热心网友
时间:2024-06-01 10:52
细菌(英文:germs;学名:bacteria)隶属生物学一类,是一类形状细短,结构简单,多以二*方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。细菌主要由细胞壁、细胞膜、细胞质、核质体等部分构成,有的细菌还有夹膜、鞭毛、菌毛等特殊结构。绝大多数细菌的直径大小在0.5~5μm之间。可根据形状分为三类,即:球菌、杆菌和螺旋菌(包括弧形菌)。 还有一种利用细菌的生活方式来分类,即可分为三大类:腐生生活、寄生生活及自养生存。细菌的发现者:英国人罗伯特·虎克。
细菌是生物的主要类群之一,属于细菌域。细菌是所有生物中数量最多的一类,据估计,其总数约有 5×10的三十次方个。细菌的个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下看到它们。细菌一般是单细胞,细胞结构简单,缺乏细胞核、细胞骨架以及膜状胞器,例如粒线体和叶绿体。基于这些特征,细菌属于原核生物(Prokaryota)。原核生物中还有另一类生物称做古细菌(Archaea),是科学家依据演化关系而另辟的类别。为了区别,本类生物也被称做真细菌(Eubacteria)。
细菌广泛分布于土壤和水中,或著与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。此外,也有部分种类分布在极端的环境中,例如温泉,甚至是放射性废弃物中,它们被归类为嗜极生物,其中最著名的种类之一是海栖热袍菌(Thermotoga maritima),科学家是在意大利的一座海底火山中发现这种细菌的。然而,细菌的种类是如此之多,科学家研究过并命名的种类只占其中的小部份。细菌域下所有门中,只有约一半包含能在实验室培养的种类。
细菌的营养方式有自营及异营,其中异营的腐生细菌是生态系中重要的分解者,使碳循环能顺利进行。部分细菌会进行固氮作用,使氮元素得以转换为生物能利用的形式。
分类地位
域: 细菌域 Bacteria
门:
产水菌门 Aquificae
热袍菌门 Thermotogae
热脱硫杆菌门 Thermodesulfobacteria
异常球菌-栖热菌门 Deinococcus-Thermus
产金菌门 Chrysiogenetes
绿弯菌门 Chloroflexi
热微菌门 Thermomicrobia
硝化螺旋菌门 Nitrospirae
脱铁杆菌门 Deferribacteres
蓝藻门 Cyanobacteria
绿菌门 Chlorobi
变形菌门 Proteobacteria
厚壁菌门 Firmicutes
放线菌门 Actinobacteria
浮霉菌门 Planctomycetes
衣原体门 Chlamydiae
螺旋体门 Spirochaetes
纤维杆菌门 Fibrobacteres
酸杆菌门 Acidobacteria
拟杆菌门 Bacteroidetes
黄杆菌门 Flavobacteria
鞘脂杆菌门 Sphingobacteria
梭杆菌门 Fusobacteria
疣微菌门 Verrucomicrobia
网团菌门 Dictyoglomi
芽单胞菌门 Gemmatimonadetes
研究历史
细菌这个名词最初由德国科学家埃伦伯格(Christian Gottfried Ehrenberg, 1795-1876)在1828年提出,用来指代某种细菌。这个词来源于希腊语βακτηριον,意为“小棍子”。
1866年,德国动物学家海克尔(Ernst Haeckel, 1834-1919)建议使用“原生生物”,包括所有单细胞生物(细菌、藻类、真菌和原生动物)。
1878年,法国外科医生塞迪悦(Charles Emmanuel Sedillot, 1804-1883)提出“微生物”来描述细菌细胞或者更普遍的用来指微小生物体。
因为细菌是单细胞微生物,用肉眼无法看见,需要用显微镜来观察。1683年,列文虎克(Antony van Leeuwenhoek, 1632–1723)最先使用自己设计的单透镜显微镜观察到了细菌,大概放大200倍。路易·巴斯德(Louis Pasteur, 1822-1895)和罗伯特·科赫(Robert Koch, 1843-1910)指出细菌可导致疾病。
形态结构
杆菌,球菌,螺旋菌,弧菌的形态各不相同,但主要都是由以下结构组成。
(一)细胞壁
细胞壁厚度因细菌不同而异,一般为15-30nm。主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰胞壁酸构成双糖单元,以β(1-4)糖苷键连接成大分子。N-乙酰胞壁酸分子上有四肽侧链,相邻聚糖纤维之间的短肽通过肽桥(革兰氏阳性菌)或肽键(革兰氏阴性菌)桥接起来,形成了肽聚糖片层,像胶合板一样,粘合成多层。
肽聚糖中的多糖链在各物种中都一样,而横向短肽链却有种间差异。革兰氏阳性菌细胞壁厚约20~80nm,有15-50层肽聚糖片层,每层厚1nm,含20-40%的磷壁酸(teichoic acid),有的还具有少量蛋白质。革兰氏阴性菌细胞壁厚约10nm,仅2-3层肽聚糖,其他成分较为复杂,由外向内依次为脂多糖、细菌外膜和脂蛋白。此外,外膜与细胞之间还有间隙。
肽聚糖是革兰阳性菌细胞壁的主要成分,凡能破坏肽聚糖结构或抑制其合成的物质,都有抑菌或杀菌作用。如溶菌酶是N-乙酰胞壁酸酶,青霉素抑制转肽酶的活性,抑制肽桥形成。
细菌细胞壁的功能包括:保持细胞外形;抑制机械和渗透损伤(革兰氏阳性菌的细胞壁能耐受20kg/cm2的压力);介导细胞间相互作用(侵入宿主);防止大分子入侵;协助细胞运动和*。
脱壁的细胞称为细菌原生质体(bacterial protoplast)或球状体(spheroplast,因脱壁不完全),脱壁后的细菌原生质体,生存和活动能力大大降低。
(二)细胞膜
是典型的单位膜结构,厚约8~10nm,外侧紧贴细胞壁,某些革兰氏阴性菌还具有细胞外膜。通常不形成内膜系统,除核糖体外,没有其它类似真核细胞的细胞器,呼吸和光合作用的电子传递链位于细胞膜上。某些行光合作用的原核生物(蓝细菌和紫细菌),质膜内褶形成结合有色素的内膜,与捕光反应有关。某些革兰氏阳性细菌质膜内褶形成小管状结构,称为中膜体(mesosome)或间体(图3-11),中膜体扩大了细胞膜的表面积,提高了代谢效率,有拟线粒体(Chondroid)之称,此外还可能与DNA的复制有关。
(三)细胞质与核质体
细菌和其它原核生物一样,没有核膜,DNA集中在细胞质中的低电子密度区,称核区或核质体(nuclear body)。细菌一般具有1-4个核质体,多的可达20余个。核质体是环状的双链DNA分子,所含的遗传信息量可编码2000~3000种蛋白质,空间构建十分精简,没有内含子。由于没有核膜,因此DNA的复制、RNA的转录与蛋白的质合成可同时进行,而不像真核细胞那样这些生化反应在时间和空间上是严格分隔开来的。
每个细菌细胞约含5000~50000个核糖体,部分附着在细胞膜内侧,大部分游离于细胞质中。细菌核糖体的沉降系数为70S,由大亚单位(50S)与小亚单位(30S)组成,大亚单位含有23SrRNA,5SrRNA与30多种蛋白质,小亚单位含有16SrRNA与20多种蛋白质。30S的小亚单位对四环素与链霉素很敏感,50S的大亚单位对红霉素与氯霉素很敏感。
细菌核区DNA以外的,可进行自主复制的遗传因子,称为质粒(plasmid)。质粒是裸露的环状双链DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒DNA在遗传工程研究中很重要,常用作基因重组与基因转移的载体。
胞质颗粒是细胞质中的颗粒,起暂时贮存营养物质的作用,包括多糖、脂类、多磷酸盐等。
(四)其他结构
许多细菌的最外表还覆盖着一层多糖类物质,边界明显的称为荚膜(capsule),如肺炎球菌,边界不明显的称为粘液层(slime layer),如葡萄球菌。荚膜对细菌的生存具有重要意义,细菌不仅可利用荚膜抵御不良环境;保护自身不受白细胞吞噬;而且能有选择地粘附到特定细胞的表面上,表现出对靶细胞的专一攻击能力。例如,伤寒沙门杆菌能专一性地侵犯肠道淋巴组织。细菌荚膜的纤丝还能把细菌分泌的消化酶贮存起来,以备攻击靶细胞之用。
鞭毛是某些细菌的运动器官,由一种称为鞭毛蛋白(flagellin)的弹性蛋白构成,结构上不同于真核生物的鞭毛。细菌可以通过调整鞭毛旋转的方向(顺和逆时针)来改变运动状态。
菌毛是在某些细菌表面存在着一种比鞭毛更细、更短而直硬的丝状物,须用电镜观察。特点是:细、短、直、硬、多,菌毛与细菌运动无关,根据形态、结构和功能,可分为普通菌毛和性菌毛两类。前者与细菌吸附和侵染宿主有关,后者为中空管子,与传递遗传物质有关。
种类
细菌可以按照不同的方式分类。细菌具有不同的形状。大部分细菌是如下三类:杆菌是棒状;球菌是球形(例如链球菌或葡萄球菌);螺旋菌是螺旋形。另一类,弧菌,是逗号形。
细菌的结构十分简单,原核生物,没有膜结构的细胞器例如线粒体和叶绿体,但是有细胞壁。根据细胞壁的组成成分,细菌分为革兰氏阳性菌和革兰氏阴性菌。“革兰氏”来源于丹麦细菌学家革兰(Hans Christian Gram),他发明了革兰氏染色。
有些细菌细胞壁外有多糖形成的荚膜,形成了一层遮盖物或包膜。荚膜可以帮助细菌在干旱季节处于休眠状态,并能储存食物和处理废物。
细菌的分类的变化根本上反应了发展史思想的变化,许多种类甚至经常改变或改名。最近随着基因测序,基因组学,生物信息学和计算生物学的发展,细菌学被放到了一个合适的位置。
最初除了蓝细菌外(它完全没有被归为细菌,而是归为蓝绿藻),其他细菌被认为是一类真菌。随着它们的特殊的原核细胞结构被发现,这明显不同于其他生物(它们都是真核生物),导致细菌归为一个单独的种类,在不同时期被称为原核生物,细菌,原核生物界。一般认为真核生物来源于原核生物。
通过研究rRNA序列,美国微生物学家伍兹(Carl Woese)于1976年提出,原核生物包含两个大的类群。他将其称为真细菌(Eubacteria)和古细菌(Archaebacteria),后来被改名为细菌(Bacteria)和古菌(Archaea)。伍兹指出,这两类细菌与真核细胞是由一个原始的生物分别起源的不同的种类。研究者已经抛弃了这个模型,但是三域系统获得了普遍的认同。这样,细菌就可以被分为几个界,而在其他体系中被认为是一个界。它们通常被认为是一个单源的群体,但是这种方法仍有争议。
古细菌
古细菌(archaeobacteria) (又可叫做古生菌或者古菌)是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白;此外还具有既不同于原核细胞也不同于真核细胞的特征,如:细胞膜中的脂类是不可皂化的;细胞壁不含肽聚糖,有的以蛋白质为主,有的含杂多糖,有的类似于肽聚糖,但都不含胞壁酸、D型氨基酸和二氨基庚二酸。
繁殖
细菌可以以无性或者遗传重组两种方式繁殖,最主要的方式是以二*法这种无性繁殖的方式:一个细菌细胞细胞壁横向*,形成两个子代细胞。并且单个细胞也会通过如下几种方式发生遗传变异:突变(细胞自身的遗传密码发生随机改变),转化(无修饰的DNA从一个细菌转移到溶液中另一个细菌中),转染(病毒的或细菌的DNA,或者两者的DNA,通过噬菌体转移到另一个细菌中),细菌接合(一个细菌的DNA通过两细菌间形成的特殊的蛋白质结构,接合菌毛,转移到另一个细菌)。细菌可以通过这些方式获得DNA,然后进行*,将重组的基因组传给后代。许多细菌都含有包含染色体外DNA的质粒。
处于有利环境中时,细菌可以形成肉眼可见的集合体,例如菌簇。
细菌以二*的方式繁殖,某些细菌处于不利的环境,或耗尽营养时,形成内生孢子,又称芽孢,是对不良环境有强抵抗力的休眠体,由于芽胞在细菌细胞内形成,故常称为内生孢子。
芽孢的生命力非常顽强,有些湖底沉积土中的芽抱杆菌经500-1000年后仍有活力,肉毒梭菌的芽孢在pH 7.0时能耐受100℃煮沸5-9.5小时。芽孢由内及外有以下几部分组成:
1.芽孢原生质(spore protoplast,核心core):含浓缩的原生质。
2.内膜(inner membrane):由原来繁殖型细菌的细胞膜形成,包围芽孢原生质。
3.芽孢壁(spore wall):由繁殖型细菌的肽聚糖组成,包围内膜。发芽后成为细菌的细胞壁。
4.皮质(cortex):是芽孢包膜中最厚的一层,由肽聚糖组成,但结构不同于细胞壁的肽聚糖,交联少,多糖支架中为胞壁酐而不是胞壁酸,四肽侧链由L-Ala组成。
5.外膜(outer membrane):也是由细菌细胞膜形成的。
6.外壳(coat):芽孢壳,质地坚韧致密,由类角蛋白组成(keratinlike protein),含有大量二硫键,具疏水性特征。
7.外壁(exosporium):芽孢外衣,是芽孢的最外层,由脂蛋白及碳水化合物(糖类)组成,结构疏松。
代谢
细菌具有许多不同的代谢方式。一些细菌只需要二氧化碳作为它们的碳源,被称作自养生物。那些通过光合作用从光中获取能量的,称为光合自养生物。那些依靠氧化化合物中获取能量的,称为化能自养生物。另外一些细菌依靠有机物形式的碳作为碳源,称为异养生物。
光合自养菌包括蓝细菌,它是已知的最古老的生物,可能在制造地球大气的氧气中起了重要作用。其他的光合细菌进行一些不制造氧气的过程。包括绿硫细菌,绿非硫细菌,紫硫细菌,紫非硫细菌和太阳杆菌。
正常生长所需要的营养物质包括氮,硫,磷,维生素和金属元素,例如钠,钾,钙,镁,铁,锌和钴。
根据它们对氧气的反应,大部分细菌可以被分为以下三类:一些只能在氧气存在的情况下生长,称为需氧菌;另一些只能在没有氧气存在的情况下生长,称为厌氧菌;还有一些无论有氧无氧都能生长,称为兼性厌氧菌。细菌也能在人类认为是极端的环境中旺盛得生长,这类生物被称为极端微生物。一些细菌存在于温泉中,被称为嗜热细菌;另一些居住在高盐湖中,称为喜盐微生物;还有一些存在于酸性或碱性环境中,被称为嗜酸细菌和嗜碱细菌;另有一些存在于阿尔卑斯山冰川中,被称为嗜冷细菌。
运动
运动型细菌可以依靠鞭毛,细菌滑行或改变浮力来四处移动。另一类细菌,螺旋体,具有一些类似鞭毛的结构,称为轴丝,连接周质的两细胞膜。当他们移动时,身体呈现扭曲的螺旋型。螺旋菌则不具轴丝,但其具有鞭毛。
细菌鞭毛以不同方式排布。细菌一端可以有单独的极鞭毛,或者一丛鞭毛。周毛菌表面具有分散的鞭毛。
运动型细菌可以被特定刺激吸引或驱逐,这个行为称作趋性,例如,趋化性,趋光性,趋机械性。在一种特殊的细菌,粘细菌中,个体细菌互相吸引,聚集成团,形成子实体。
用途与危害
细菌对环境,人类和动物既有用处又有危害。一些细菌成为病原体,导致了破伤风、伤寒、肺炎、梅毒、霍乱和肺结核。在植物中,细菌导致叶斑病、火疫病和萎蔫。感染方式包括接触、空气传播、食物、水和带菌微生物。病原体可以用抗菌素处理,抗菌素分为杀菌型和抑菌型。
细菌通常与酵母菌及其他种类的真菌一起用于酦酵食物,例如在醋的传统制造过程中,就是利用空气中的醋酸菌(Acetobacter)使酒转变成醋。其他利用细菌制造的食品还有奶酪、泡菜、酱油、醋、酒、优格等。细菌也能够分泌多种抗生素,例如链霉素即是由链霉菌(Steptomyces)所分泌的。
细菌能降解多种有机化合物的能力也常被用来清除污染,称做生物复育(bioremediation )。举例来说,科学家利用嗜甲烷菌(methanotroph)来分解美国佐治亚州的三氯乙烯和四氯乙烯污染。
细菌也对人类活动有很大的影响。一方面,细菌是许多疾病的病原体,包括肺结核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由细菌所引发。然而,人类也时常利用细菌,例如奶酪及优格的制作、部分抗生素的制造、废水的处理等,都与细菌有关。在生物科技领域中,细菌有也著广泛的运用。
[一]细菌发电
生物学家预言,21世纪将是细菌发电造福人类的时代。说起细菌发电,可以追溯到1910年,英国植物学家利用铂作为电极放进大肠杆菌的培养液里,成功地制造出世界上第一个细菌电池。1984年,美国科学家设计出一种太空飞船使用的细菌电池,其电极的活性物质是宇航员的尿液和活细菌。不过,那时的细菌电池放电效率较低。到了20世纪80年代末,细菌发电才有了重大突破,英国化学家让细菌在电池组里分解分子,以释放电子向阳极运动产生电能。其方法是,在糖液中添加某些诸如染料之类的芳香族化合物作为稀释液,来提高生物系统输送电子的能力。在细菌发电期间,还要往电池里不断地充气,用以搅拌细菌培养液和氧化物质的混和物。据计算,利用这种细菌电池,每100克糖可获得1352930库仑的电能,其效率可达40%,远远高于现在使用的电池的效率,而且还有10%的潜力可挖掘。只要不断地往电池里添入糖就可获得2安培电流,且能持续数月之久。
利用细菌发电原理,还可以建立细菌发电站。在10米见方的立方体盛器里充满细菌培养液,就可建立一个1000千瓦的细菌发电站,每小时的耗糖量为200千克,发电成本是高了一些,但这是一种不会污染环境的"绿色"电站,更何况技术发展后,完全可以用诸如锯末、秸秆、落叶等废弃的有机物的水解物来代替糖液,因此,细菌发电的前景十分诱人。
现在,各发达国家如八仙过海,各显神通:美国设计出一种综合细菌电池,是由电池里的单细胞藻类首先利用太阳光将二氧化碳和水转化为糖,然后再让细菌利用这些糖来发电;日本将两种细菌放入电池的特制糖浆中,让一种细菌吞食糖浆产生醋酸和有机酸,而让另一种细菌将这些酸类转化成氢气,由氢气进入磷酸燃料电池发电;英国则发明出一种以甲醇为电池液,以醇脱氢酶铂金为电极的细菌电池。
而且现在,各种不同的细菌电池相继问世。例如有一种综合细菌电池,先由电池里的单细胞藻类利用日光将二氧化碳和水转化成糖,然后再让细菌利用这些糖来发电。还有一种细菌电池则是将两种细菌放入电池的特制糖浆中,让一种细菌吞食糖浆产生醋酸和有机酸,再让另一种细菌将这些酸类转化成氢气,利用氢气进入磷酸燃料电池发电。
人们还惊奇地发现,细菌还具有捕捉太阳能并把它直接转化成电能的"特异功能"。最近,美国科学家在死海和大盐湖里找到一种嗜盐杆菌,它们含有一种紫色素,在把所接受的大约10%的阳光转化成化学物质时,即可产生电荷。科学家们利用它们制造出一个小型实验性太阳能细菌电池,结果证明是可以用嗜盐性细菌来发电的,用盐代替糖,其成本就大大降低了。由此可见,让细菌为人类供电已不是遥远的设想,而是不久的现实。
[二]细菌益肠胃
身体大肠内的细菌靠分解小肠内部的废弃物生活。这些东西由于不可消化,人体系统拒绝处理它们。这些细菌自己装备有一系列的酶和新陈代谢的通道。这样,它们能够继续把遗留的有机化合物进行分解。它们中的大多数的工作都是分解植物中的碳水化合物。大肠内部大部分的细菌是厌氧性的细菌,意思就是它们在没有氧气的状态下生活。它们不是呼出和呼入氧气,而是通过把大分子的碳水化合物分解成为小的脂肪酸分子和二氧化碳来获得能量。这一过程称为“发酵”。
一些脂肪酸通过大肠的肠壁被重新吸收,这会给我们提供额外的能源。剩余的脂肪酸帮助细菌迅速生长。其速度之快可以使它们在每20分钟内繁殖一次。因为它们合成的一些维生素B和维生素K比它们需要的多,所以它们非常慷慨地把多余的维生素供应给它们这个群体中其他的生物,也提供给你——它们的宿主。尽管你不能自己生产这些维生素,但你可以依靠这些对你非常友好的细菌来源源不断供应给你。
科学家们刚刚开始明白这一集体中不同的细菌之间的复杂关系,以及它们同人这个宿主之间的相互作用。这是一个动态的系统,随着宿主在饮食结构和年龄上的变化,这一系统也做出相应的调整。你一出生就开始在体内汇集你所选择的细菌的种类。当你的饮食结构从母乳变为牛奶,又变成不同的固体食物时,你的体内又会有新的细菌来占据主导地位了。
积聚在大肠壁上的细菌是经历过艰难旅程后的幸存者。从口腔开始经过小肠,他们受到消化酶和强酸的袭击。那些在完成旅行后而安然无恙的细菌在到达时会遇到更多的障碍。要想生长,它们必须同已经住在那里的细菌争夺空间和营养。幸运的是,这些“友好的”细菌能够非常熟练地把自己粘贴到大肠壁上任何可利用的地方。这些友好的细菌中的一些可以产生酸和被称为“细菌素”的抗菌化合物。这些细菌素可以帮助抵御那些令人讨厌的细菌的侵袭。
那些友好的细菌能够控制更危险的细菌的数量,增加人们对“前生命期”食物的兴趣。这种食物含有培养菌,酸奶就是其中的一种。在你喝下一瓶酸奶的时候,检查一下标签,看一看哪种细菌将会成为你体内的下一批客人。
培养
常用的细菌培养基
配方一 牛肉膏琼脂培养基
牛肉膏0.3克 ,蛋白胨1.0克,氯化钠 0.5克,琼脂 1.5克,
水 1000毫升
在烧杯内加水100毫升,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸或10%的氢氧化钠调整pH值到7.2~7.6,分装在各个试管里,加棉花塞,用高压蒸汽灭菌30分钟。
配方二 马铃薯培养基
取新鲜牛心(除去脂肪和血管)250克,用刀细细剁成肉末后,加入500毫升蒸馏水和5克蛋白胨。在烧杯上做好记号,煮沸,转用文火炖2小时。过滤,滤出的肉末干燥处理,滤液pH值调到7.5左右。每支试管内加入10毫升肉汤和少量碎末状的干牛心,灭菌,备用。
配方三 根瘤菌培养基
葡萄糖 10克 磷酸氢二钾 0.5克
碳酸钙 3克 硫酸镁 0.2克
酵母粉 0.4克 琼脂 20克
水 1000毫升 1%结晶紫溶液 1毫升
先把琼脂加水煮沸溶解,然后分别加入其他组分,搅拌使溶解后,分装,灭菌,备用
热心网友
时间:2024-06-01 10:52
醋酸菌发酵青贮 (Silage) 是指在密封条件下使青绿饲料发酵以能够在相当长的时间内保持其质量相对稳定的一种保鲜技术。醋酸菌发酵青贮饲料就是青绿或半干饲料在厌氧条件下靠乳酸菌发酵制成能够长期保存的饲料。这种饲料能较好的保存青绿植物的营养成分,保证原料青绿时良好的质地、适口性好、消化利用率高,特别是对反刍动物是一种非常好的优质饲料。 微生物醋酸菌发酵青贮剂 (Silage Inoculant Bacteria ,简称 SIB) ,亦称醋酸菌发酵青贮接种菌、生物醋酸菌发酵青贮剂、醋酸菌发酵青贮饲料发酵剂、乳酸菌接种剂( LAB ),是专门用于饲料醋酸菌发酵青贮的一类微生物添加剂,由 1 种或 1 种以上乳酸菌、酶和一些活化剂组成,主要作用是有目的地调节醋酸菌发酵青贮料内微生物区系,*醋酸菌发酵青贮发酵过程,促进乳酸菌大量繁殖更快地产生乳酸,促进多糖与粗纤维的转化,从而有效地提高醋酸菌发酵青贮饲料的质量。 因此,认识和掌握醋酸菌发酵青贮技术是非常必要的。
1 、醋酸菌发酵青贮饲料的优点
醋酸菌发酵青贮饲料能有效保存植物的营养成分,一般青绿植物在成熟和晒干后营养价值约降低 30-50% ,而经过醋酸菌发酵青贮后的饲料仅仅降低 5-10% ,特别是醋酸菌发酵青贮后的饲料中蛋白质和维生素能够很好的得到保存。醋酸菌发酵青贮能保持原料青绿时的鲜嫩汁液,含水量是干草的 5 倍( 70% 以上),不仅适口性好,而且消化利用率很高。醋酸菌发酵青贮是保存饲料的经济又实用的方法,在保证了原料的营养的同时还是一种经济的保存方法,每一立方的空间可以贮藏五、六百公斤的原料,可以节约大量空间。醋酸菌发酵青贮可以使季节的*降到最低,经过醋酸菌发酵青贮的饲料可以保存好几年,对反刍动物来说是维持和创造高产水平不可缺少的重要原料。醋酸菌发酵青贮后的饲料安全性更高,经微生物的作用可以将有毒原料的毒性大大降低,微生物还可以分解纤维素等成分,更有利于消化吸收。
2 、饲料醋酸菌发酵青贮的原理
二十世纪三十年代芬兰学者、诺贝尔奖获得者 A.I.Virtanen 曾对醋酸菌发酵青贮发酵过程菌群的生长演变和生化反应过程进行过大量的研究,基本揭示了醋酸菌发酵青贮的发酵生化过程。醋酸菌发酵青贮饲料的发酵过程基本分为四个阶段,即植物呼吸期、微生物竞争期、乳酸积累期和相对稳定期。
2 . 1 植物呼吸期:约 5 天左右,待醋酸菌发酵青贮植物细胞密封后并非立即死亡,仍然保持生活状态,利用环境中的氧气进行呼吸作用直到氧气耗尽形成厌氧环境,此过程温度一般维持在 20-30 ℃。此后植物细胞开始窒息死亡,细菌的作用逐渐突出,进入微生物竞争期。
2 . 2 微生物竞争期:微生物竞争期是好氧菌和厌氧菌、其他菌与乳酸菌进行竞争优势菌群的时期,实际上就是微生物相互生态关系的一种体现。氧气耗尽后植物细胞和好氧菌生命活动都基本停止,厌氧菌逐渐成为优势菌群,他们利用原料中丰富的碳水化合物作为碳源产生乳酸、醋酸、丁酸等酸类物质,使得环境 PH 值急剧下降,有效的遏制了不耐酸的*菌的生长繁殖。乳酸菌逐渐成为优势菌群,进入乳酸积累期。醋酸菌发酵青贮过程中的主要*菌是丁酸菌,丁酸菌是一种能够将蛋白质分解成氨或胺等*恶臭气味物质的一类梭状杆菌,严重影响饲料的适口性和安全性。其他腐生菌可将氨基酸等营养成分转化为尸胺等有毒物质。
2 . 3 乳酸积累期:乳酸菌迅速繁殖成为醋酸菌发酵青贮饲料中的优势菌,在适宜的温度、酸度、湿度环境中大量繁殖经过糖酵解作用产生大量乳酸,乳酸可部分转化为醋酸、丙酸及丁酸,使 PH 值进一步下降,以至于遏制了乳酸菌的生长,逐渐形成一个稳定的状态,即相对稳定期。
2 . 4 相对稳定期:由于存在大量的乳酸菌和乳酸,形成了一个相对稳定的平衡状态,乳酸菌分泌乳酸可以保持饲料不受其他微生物影响而变质,同时又*了乳酸菌的过量繁殖,乳酸菌在乳酸不足时又继续生长分泌乳酸,微生态如此循环,能够使饲料保持近十年的时间。
3 、醋酸菌发酵青贮过程中的有益微生物与添加剂
醋酸菌发酵青贮过程的有益微生物和醋酸菌发酵青贮添加剂是进行醋酸菌发酵青贮的重要影响因素,选用不当菌种或添加剂可能导致醋酸菌发酵青贮失败。
醋酸菌发酵青贮饲料中重要的乳酸菌可分为同型发酵和异型发酵两种菌。同型发酵菌将葡萄糖经过糖酵解作用生成乳酸,而异型发酵产物除了乳酸外还有乙醇、醋酸和二氧化碳等,相对而言,同型发酵更能够充分利用营养成分,减少了营养损失,所以在选择醋酸菌发酵青贮发酵菌种时应选择同型发酵菌种。同型发酵菌种主要有:植物乳杆菌、乳酸片球菌、戊糖片球菌、酪蛋白乳杆菌、粪链球菌等,异型发酵菌种主要有:短乳杆菌、布氏乳杆菌和葡聚糖明串珠菌等。国外报道植物乳杆菌、乳酸片球菌、戊糖片球菌的作用效果最为显著,美国微生物醋酸菌发酵青贮剂大多采用这三种菌株作为微生物醋酸菌发酵青贮剂的生产菌种。
其他非微生物添加剂主要包括乳酸菌促生长剂、*菌抑制剂和营养型添加剂(主要针对低糖类醋酸菌发酵青贮原料)。除了微生物制剂外应用比较广的添加剂是*菌抑制剂,主要有甲酸、苯甲酸和甲醛。甲酸(蚁酸)对丁酸菌的抑制效果最为显著,不容易引起二次发酵(杂菌的再次发酵),所以应用较多,但是甲酸对乳酸菌也有一定程度的抑制作用,因此醋酸菌发酵青贮质量不高,在国外也有利用甲酸、乙酸、丙酸复合作为醋酸菌发酵青贮添加剂的先例,但效果不如微生物醋酸菌发酵青贮剂效果好;苯甲酸(或其钠盐)在 PH 为 2.5-4.0 的条件下对乳酸菌等产酸菌作用较弱,对其他微生物有较好的抑制作用,优点是苯甲酸安全性好,但作用不如甲酸强烈,对二次发酵的控制力度不够;甲醛对蛋白质分解菌有较强的抑制作用,同时能够保护蛋白质通过瘤胃,消化利用率与微生物醋酸菌发酵青贮剂相当,缺点是对操作人员有强烈的刺激。现在也有用乙酸、丙酸、尿素作为醋酸菌发酵青贮添加剂的。另外,辅助性醋酸菌发酵青贮添加剂主要是复合酶制剂,酶制剂应该选择淀粉酶、纤维素酶、半纤维素酶、 NSP 酶等活性较高的制剂,有利于原料的充分利用。酶制剂的菌种主要有黑曲霉、米曲霉、枯草杆菌等。
4 、微生物醋酸菌发酵青贮剂的生产技术
我国目前微生物醋酸菌发酵青贮剂生产企业仅有三、四家,中国农业科学院饲料所时建忠研究员领导的微生物醋酸菌发酵青贮剂生产技术课题组(国家 948 引进项目),将国外的优良菌种和生产工艺消化、吸收后,在宝来利来进行中试,生产出国际先进水平的微生物醋酸菌发酵青贮剂。
微生物醋酸菌发酵青贮剂里的植物乳杆菌和戊糖片球菌菌株均为同型发酵乳酸菌,是美国 20 世纪 90 年代中期筛选、培育的优良菌株。中国农科院饲料所的科技人员将两种乳酸菌同时配伍在同一产品,在醋酸菌发酵青贮饲料发酵中分别发挥初发酵菌和终发酵菌作用。两者互补,解决了醋酸菌发酵青贮过程中温度和 pH 值变化大,单菌发酵效率低的难题。通过改进发酵工艺,使植物乳杆菌和戊糖片球菌菌株发酵液生物量分别达到每毫升含 30 亿个有效菌落,经冷冻干燥技术处理获得的原菌粉分别达到每克含 4200 亿和 384 亿个有效菌以上,最后配成活菌数量大于每克 800 亿个有效菌落,是国内外报道最高水平 4 倍以上。
宝来利来技术人员还首次采用冷冻干燥工艺和冻干保护技术生产微生物醋酸菌发酵青贮剂( 863 项目子课题),利用国产冻干设备干燥醋酸菌发酵青贮接种剂的工艺,采用谷氨酸、肌醇、海藻糖等八种成分配合的冷冻保护剂进行保护,在国内首次采用中温减压干燥和淀粉包被技术生产微生物醋酸菌发酵青贮剂,保证了活菌制剂的稳定性,研制产品在 90 天内保存在 -20℃ 以下不失活,存活率达 99.2% , 12 个月的损失率在 8% 以下,填补了国内同类产品的空白。 动物试验表明,饲喂添加该产品的玉米醋酸菌发酵青贮,可使奶牛产奶量提高 0.93 公斤 / 天,;肉牛增重提高 105 克 / 天。 目前这一课题通过了农业部和科技部的专家验收。
5 、醋酸菌发酵青贮饲料的制作技术及品质判断
饲料醋酸菌发酵青贮方法可以根据实际需要和当地条件以及原料特点灵活掌握。主要方法有:窖式法、塔式法、堆式法、袋式法等。制作时应该注意以下几点:快装、切碎压实、密封。密封的好坏是决定醋酸菌发酵青贮成败的关键,醋酸菌发酵青贮的原理就是利用乳酸菌的厌氧发酵,密封不严会导致空气进入,霉菌快速生长成为优势菌会导致醋酸菌发酵青贮失败。
良好的醋酸菌发酵青贮饲料应具备以下特点: 1 )具有酸香味和轻微的醇香味,给人舒适的感觉; 2 )颜色,原料的不同会使醋酸菌发酵青贮料的颜色有所不同,收割适时并及时处理的原料为青绿或黄绿色; 3 )质地松散柔软,压的紧密,微湿,能够分辨出原料的形状。
6 、醋酸菌发酵青贮饲料的应用前景
醋酸菌发酵青贮料目前在反刍动物养殖中应用的较多,成为一种非常重要的饲料。目前大多采用自然发酵方式,很多不稳定的因素*了醋酸菌发酵青贮的效果。在生物技术飞速发展的今天,充分利用人工控制技术对醋酸菌发酵青贮过程进行控制将对提高醋酸菌发酵青贮质量起到不可估量的作用。醋酸菌发酵青贮添加剂的广泛应用不仅会带来醋酸菌发酵青贮料在反刍动物上的应用,也可以应用到其他动物。因此,掌握饲料醋酸菌发酵青贮原理和正确选择醋酸菌发酵青贮添加剂必将在很大程度上对畜牧业的发展起到促进作用。
热心网友
时间:2024-06-01 10:53
1.大小:细菌个体微小用显微镜放大百倍千倍才能看到基本形状!大多数球菌的直径为1.0微米,杆菌的长度为2-3微米宽0.3-0.5微米!
2.特点:由细胞壁,细胞膜,细胞质,核质组成,当然上述的是一般细胞所具有的基本结构,但是有很多细菌能在这个大自然生活存在是因为他们还具有特殊的结构既:荚膜,鞭毛,菌毛,芽孢!
3.生活地:细菌是个微生物的大家族,广泛存在于自然界和正常人体.如生活在土壤中的破伤风梭菌,炭疽芽孢杆菌^^^^生活在水中的大肠埃希氏菌,和生活在空气中的能引起呼吸到疾病的菌~
人体也存在许多正常的菌群,但当外界条件改变时或者机体免疫力降低的时候这些菌就能导致疾病就是所谓的条件致病菌!
4.生长繁殖:细菌是以二*的方式进行无性繁殖!
热心网友
时间:2024-06-01 10:53
1.大小:细菌个体微小用显微镜放大百倍千倍才能看到基本形状!大多数球菌的直径为1.0微米,杆菌的长度为2-3微米宽0.3-0.5微米!
2.特点:由细胞壁,细胞膜,细胞质,核质组成,当然上述的是一般细胞所具有的基本结构,但是有很多细菌能在这个大自然生活存在是因为他们还具有特殊的结构既:荚膜,鞭毛,菌毛,芽孢!
3.生活地:细菌是个微生物的大家族,广泛存在于自然界和正常人体.如生活在土壤中的破伤风梭菌,炭疽芽孢杆菌^^^^生活在水中的大肠埃希氏菌,和生活在空气中的能引起呼吸到疾病的菌~
人体也存在许多正常的菌群,但当外界条件改变时或者机体免疫力降低的时候这些菌就能导致疾病就是所谓的条件致病菌!
热心网友
时间:2024-06-01 10:54
1细菌主要由细胞膜、细胞质、核质体等部分构成,有的细菌还有荚膜、鞭毛、菌毛等特殊结构。细胞核不成形。
2细菌的个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下看到它们。绝大多数细菌的直径大小在0.5~5μm之间。
3细菌一般是单细胞,细胞结构简单,缺乏细胞核、细胞骨架以及膜状胞器,例如线粒体和叶绿体。基于这些特征,细菌属于原核生物(Prokaryota)。
4细菌广泛分布于土壤和水中,或者与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。此外,也有部分种类分布在极端的环境中,例如温泉,甚至是放射性废弃物中,它们被归类为嗜极生物。
5细菌的营养方式有自养及异养,其中异营的腐生细菌是生态系中重要的分解者,使碳循环能顺利进行。部分细菌会进行固氮作用,使氮元素得以转换为生物能利用的形式。
/iknow-pic.cdn.bcebos.com/b58f8c5494eef01f34d3579aedfe9925bd317dad"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/b58f8c5494eef01f34d3579aedfe9925bd317dad?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/b58f8c5494eef01f34d3579aedfe9925bd317dad"/>
扩展资料:
细菌的结构分为基本结构和特殊结构。基本结构是各种细菌都具有的结构,包括细菌的细胞壁、细胞膜、细胞质、核质。某些细菌特有的结构称为特殊结构,包括细菌的荚膜、鞭毛、菌毛、芽胞。
某些细菌处于不利的环境,或耗尽营养时,形成内生孢子,又称芽孢,是对不良环境有强抵抗力的休眠体,由于芽孢在细菌细胞内形成,故常称为内生孢子。
芽孢的生命力非常顽强,有些湖底沉积土中的芽孢杆菌经500-1000年后仍有活力,肉毒梭菌的芽孢在pH7.0时能耐受100℃煮沸5-9.5小时。芽孢由内及外有以下几部分组成:
1.芽孢原生质(sporeprotoplast,核心core):含浓缩的原生质。
2.内膜(innermembrane):由原来繁殖型细菌的细胞膜形成,包围芽孢原生质。还有细模质。
3.芽孢壁(sporewall):由繁殖型细菌的肽聚糖组成,包围内膜。发芽后成为细菌的细胞壁。
4.皮质(cortex):是芽孢包膜中最厚的一层,由肽聚糖组成,但结构不同于细胞壁的肽聚糖,交联少,多糖支架中为胞壁酐而不是胞壁酸,四肽侧链由L-Ala组成。
5.外膜(outermembrane):也是由细菌细胞膜形成的。
6.外壳(coat):芽孢壳,质地坚韧致密,由类角蛋白组成(keratinlikeprotein),含有大量二硫键,具疏水性特征。
7.外壁(exosporium):芽孢外衣,是芽孢的最外层,由脂蛋白及碳水化合物(糖类)组成,结构疏松。
将性状不同的个体细胞的遗传基因,转移到另一细胞内,使之发生遗传变异的过程。细菌的基因重组有:
1.转化。受菌直接摄取供菌的游离DN*断,并将它整合到自己的基因组中,而获得供菌部分遗传性状的现象。
2.转导。以噬菌体为媒介,供菌中的DN*段被带至受菌中,使后者获得部分遗传性状。
3.溶原转变。当温和噬菌体感染其寄主,将噬菌体基因带入寄生基因组时,使后者获得新的性状的现象。当寄生菌丧失该噬菌体时,所获得新的性状亦消失。
4.接合。供菌与受菌通过直接接触或性菌毛介导,供菌的大段DNA(包括质粒)进入受菌,而与后者发生基因重组的现象。
参考资料:/ke.baidu.com/item/%E7%BB%86%E8%8F%8C"target="_blank"title="百度百科——细菌">百度百科——细菌