高数中函数定义域能否为空集?
发布网友
发布时间:2022-04-26 06:30
我来回答
共2个回答
热心网友
时间:2022-06-24 17:34
(1)函数的定义域不可以为空集。
原因:(1)课本上函数定义指明,对于非空的数集A,B,……
(2)从空集本身的定义来看,空集指不含任何元素的集合,元素都没有了,就不存在函数的定义中要求的对应关系了。
②绝对值不等式为什么称为两边之和大于第三边,两边之差小于第三边,是为了记忆还是与向量运算有关?
对于这个问题,教材上是在先给出绝对值不等式,在附加说明向量关系中引申的三角形的3边关系。
因为向量运算与绝对值不等式这种数的运算的差别性,他们之间没有直接的联系。因此引入三角形的边的关系,只是为了便于记忆。即使便于记忆了,在使用绝对值不等式公式时,还是要注意:(1)绝对值背景;(2)绝对值的和与和的绝对值 之间的差别。(3)绝对值的差与差的绝对值 之间的差别。(4)机械的套用三角形三边的关系是不够的。
热心网友
时间:2022-06-24 17:34
1.函数的定义域可以为空集,定义域本身就是个集合,空集也是集合。但是这样的函数没有实际意义,只有理论意义。
2.|a+b|=|a|+|b|→ab≥0
|a-b|=|a|+|b|→ab≤0
|a|-|b|=|a+b|→b(a+b)≤0
|a|-|b|=|a-b|→b(a-b)≥0
注:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0
同理可得|a|-|b|=|a-b|→b(a-b)≥0追问额。。第二个什么意思,没看懂。。。