常数项级数的敛散性数二考吗
发布网友
发布时间:2022-04-26 02:10
我来回答
共1个回答
热心网友
时间:2022-05-03 07:55
考
常数项级数敛散性判断(一)对处理常数项级数敛散性判断的步骤作了概述。我们接着来说下对常数项级数收敛的定义和性质。很多同学做不好常数项级数敛散性判断的题有绝大部分的原因是对性质到题目中的体现不能做出判断,换句话说,对性质的本质一些东西抓不住,被题目中的一些表象给迷惑,看不到问题背后的知识点,故就没有头绪。先对常数项级数收敛的定义及性质进行解释,尤其对性质本身的一些特征进行突出强调,因为这些特征往往是我们解题的依据或口。以帮*生对定义及性质增加理解与运用
定义 设常数项级数的前项和为,若由构成的数列的极限存在,则称级数是收敛的,称极限值为此级数的和,即;若不存在,则称级数是发散的。
注:从定义可以看出,判断级数收敛本质就是判断部分和构成的数列的极限是否存在。所以用定义判断级数的敛散性就可以转化为部分和构成的数列数列极限的存在问题。故定义适用于形式可以求出的级数。
性质1 级数收敛的必要条件,设级数收敛,则。
注:这个性质告诉我们要判断一个级数,首先他的通项必须是;否则这个级数一定是发散的。故我们判断级数的敛散性第一关注的是否有成立。
性质2 如果级数与是收敛的,则是收敛的,其中为常数。