CUDA和OpenCL有什么区别?
发布网友
发布时间:2022-04-26 06:53
我来回答
共1个回答
热心网友
时间:2022-04-13 06:55
从很多方面来看,CUDA和OpenCL的关系都和DirectX与OpenGL的关系很相像。如同DirectX和OpenGL一样,CUDA和OpenCL中,前者是配备完整工具包、针对单一供应商(NVIDIA)的成熟的开发平台,后者是一个开放的标准。
虽然两者抱着相同的目标:通用并行计算。但是CUDA仅仅能够在NVIDIA的GPU硬件上运行,而OpenCL的目标是面向任何一种Massively Parallel Processor,期望能够对不同种类的硬件给出一个相同的编程模型。由于这一根本区别,二者在很多方面都存在不同:
1)开发者友好程度。CUDA在这方面显然受更多开发者青睐。原因在于其统一的开发套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常丰富的库(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA编译器)所具备的PTX(一种SSA中间表示,为不同的NVIDIA GPU设备提供一套统一的静态ISA)代码生成、离线编译等更成熟的编译器特性。相比之下,使用OpenCL进行开发,只有AMD对OpenCL的驱动相对成熟。
2)跨平台性和通用性。这一点上OpenCL占有很大优势(这也是很多National Laboratory使用OpenCL进行科学计算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在内的多类处理器,并能支持运行在CPU的并行代码,同时还独有Task-Parallel Execution Mode,能够更好的支持Heterogeneous Computing。这一点是仅仅支持数据级并行并仅能在NVIDIA众核处理器上运行的CUDA无法做到的。
3)市场占有率。作为一个开放标准,缺少背后公司的推动,OpenCL显然没有占据通用并行计算的主流市场。NVIDIA则凭借CUDA在科学计算、生物、金融等领域的推广牢牢把握着主流市场。再次想到OpenGL和DirectX的对比,不难发现公司推广的高效和非盈利机构/标准委员会的低效(抑或谨慎,想想C++0x)。
很多开发者都认为,由于目前独立显卡市场的萎缩、新一代处理器架构(AMD的Graphics Core Next (GCN)、Intel的Sandy Bridge以及Ivy Bridge)以及新的SIMD编程模型(Intel的ISPC等)的出现,未来的通用并行计算市场会有很多不确定因素,CUDA和OpenCL都不是终点,我期待未来会有更好的并行编程模型的出现(当然也包括CUDA和OpenCL,如果它们能够持续发展下去)。