问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

一些平面几何的著名定理

发布网友 发布时间:2022-04-26 22:16

我来回答

2个回答

热心网友 时间:2022-07-18 05:48

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】
★1、勾股定理(毕达哥拉斯定理)
  
  ★2、射影定理(欧几里得定理)
  
  ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
  
  4、四边形两边中心的连线和两条对角线中心的连线交于一点
  
  5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
  
  ★6、三角形各边的垂直平分线交于一点。
  
  ★7、从三角形的各顶点向其对边所作的三条垂线交于一点
  
  8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL
  
  9、三角形的外心,垂心,重心在同一条直线上。
  
  10、(九点圆或欧拉圆或费尔*圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
  
  11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
  
  12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
  
★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:
,s为三角形周长的一半
  
  ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
  
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)

16、斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)

  17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
  
  18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
  
  ★19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
  
  ★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
  
  21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
  
  22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
  
  ★23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BP/PC×CQ/QA×AR/RB=1
  
★24、梅涅劳斯定理的逆定理:(略)
  
  ★25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
  
  ★26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
  
  ★27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BP/PC×CQ/QA×AR/RB=1.
  
  ★28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
  
  ★29、塞瓦定理的逆定理:(略)
  
  ★30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
  
  ★31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

  ★32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
  
  ★33、西摩松定理的逆定理:(略)
  
  34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
  
  35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
  
  36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=360°的倍数
  
  37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
  
  38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
  
  39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
  
  40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
  
  41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
  
  42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
  
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。

44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线。

45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线。

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)

47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

 48、从三角形各边的中点,向这条边所的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心。

  49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
  
  50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
  51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
  
  52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
  
  53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
  
  54、费尔*定理:三角形的九点圆与内切圆和旁切圆相切。
  
  55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
  
  56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
  
  57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

  58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

  59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
  
  60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
  
61、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。

热心网友 时间:2022-07-18 07:06

梅涅劳斯
勾股
赛瓦
............
太多了
平面几何基本定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。6、三角形各边的垂直一平分线交于一点。7...

随机(正弦)振动

正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共...

一些平面几何的著名定理

★24、梅涅劳斯定理的逆定理:(略) ★25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。 ★26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q...

一些平面几何基本定理

1. 鸡爪定理: 这个犹如鸡爪形状的定理揭示了一个三角形的秘密。当内心I与一内角平分线的延长线K相交于外接圆,你会发现KI、KJ、KB、KC的长度均相等。这个现象在竞赛中堪称利器,是三角形几何中的独门秘籍。西姆松定理: 它讲述的是三角形外接圆的独特性质。若过圆上非顶点点的垂线分别交三边延长线,...

高中平面几何的重要公式定理?

10、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。11、笛沙格(Desargues)定理:已知在△ ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z...

平面几何五大定理是哪五大?

平面几何五大定理是:公设1:任意一点到另外任意一点可以画直线。公设2:一条有限线段可以继续延长。公设3:以任意点为心及任意的距离可以画圆。公设4:凡直角都彼此相等。公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。

平面几何有哪些著名定理

毕达格拉斯定理(即勾股定理)影射定理(与相似三角形和比例有关)梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理(全都跟边的比例有关;还有些特别的性质)这几个都比较著名,其他的就不说了,有很多,以后会学到

初中数学平面几何定理

初中数学平面几何定理大全 平面几何,在初中数学中,是重点也是难点,如果同学们想要学好初中平面几何题的话,那么就要掌握好平面几何的定理,下面我就给大家介绍平面几何里面的定理有哪些?希望能够帮助到大家。 1.勾股定理(毕达哥拉斯定理) 2.射影定理(欧几里得定理) 3.三角形的三条中线交于一点,并且,各中线被这个点分...

平面几何四个重要定理

在平面几何中,四个重要的定理为我们理解和解决各种几何问题提供了基础。首先,梅涅劳斯定理,也被称为梅氏线定理,它指出在三角形ABC及其延长线上,如果存在点A'、B'和C'满足A'、B'、C'共线的条件,那么这个关系成立的充要条件是 CB'/A'C乘以CB'/B'A再乘以AC'/C'B的乘积等于1。接着是塞瓦...

机械行业这些著名的平面几何定理,你知道几个

机械行业的设计和制造过程中,掌握这些著名的平面几何定理对提高绘图准确性和效率至关重要。以下是其中的一些关键定理:欧拉线:同一三角形的垂心、重心和外心三点共线,这条直线被称为欧拉线,外心到重心的距离是垂心到重心距离的一半。 九点圆:三角形的三个顶点、中位线的交点、高线的垂足以及外心...

著名的高中数学定理有哪些?

1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,...

平面几何中的几个著名定理 平面几何的著名定理 平面几何中的莫勒定理 初等几何的著名定理 介绍猫爪定理平面几何的书 平面几何三大定理 平面几何定理大全 数学平面几何三大定理 数学平面几何八定理
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
宫颈纳氏囊肿是怎么引起的 子宫颈囊肿是怎么形成的 市面上有哪些非常休闲百搭的帽款值得入手? 男士冬季佩戴的帽子有哪些推荐的? 孩子吃什么钙片比较好 婴幼儿吃什么钙最好 ...什么叫“自我意识”,怎么能“意识到我自己个人的存在”呢??_百 ... iphone4怎么播放ape 诱骗投资人买卖证券期货罪如何定性 iphone4兼容flac和ape格式的音乐吗? 处理器英特尔 Core i3-7100的针脚还适合什么处理器?i5跟i7的都适合吗? 在三角形AFG中,三角形ABC,BCD,CDE,DEG,DFG的面积是6、10、14、9、20平方厘米,求 如图,在Rt△ABC中,∠B=90度,sin∠BAC=1/3,点D是AC上一点 如图,△ABC为等腰直角三角形,D为AB的中点,AB=2,扇形ADG、BDH的圆心角∠DAG、∠DBH都等于90度.求阴影 在三角形AFG中,三角形ABC、BCD、CDE、DEG、DFG的面积分别是6、10、14、9、20平方厘米。求三角形DEF的面积 altium designer编译的时候出现 adg北京到廊坊多少公里 杨幂的胸上围以前很大现在没了?为什么 杨幂捂胸口引起争论,为什么能引起这么大反响? 为什么杨幂在古剑奇谭的胸这么大 如此瘦小的身体有如此* 这不科学 杨幂为何在在古剑奇谭中胸变大? 杨幂有多好看? 如何将扫描图片转换成pdf图片 武汉有哪些 军校 武汉的军校有那些?哪所比较好?具体一点。谢谢 武汉有哪些军校?哪所军校最好?谢谢大家,我急需啊! 武汉 有那几所军校? 武汉的军校有哪些 军校有哪些学校? 湖北省内有哪些军校? ADGIHNFAFD 这是什么秘籍啊?是罪恶都市吗? 求古风歌曲,要百度云谢谢 请问什么样的服务器适合中小企业ERP应用? 关于ps2侠盗猎车罪恶都市的问题~高手帮帮忙~~~ 麋鹿王电影观后感 薄荷味白凉粉的家常做法怎么做好吃 冰爽薄荷凉粉怎么做好吃 薄荷冰凉粉的做法步骤图,薄荷冰凉粉怎么做 薄荷冰粉粉的做法,薄荷冰粉粉怎么做好吃,薄荷 薄荷红糖凉粉的做法,薄荷红糖凉粉怎么做好吃 微信在什么情况下会在好友备注的下方显示电话号码 本人上怎样设置备注和标签及电话号码 A保B保是啥意思? 相亲的时候遇到奇葩男应该怎么办? 为什么相亲总会遇到奇葩?都遇到哪些事让人不能忍? 你有见过什么奇葩的相亲理由? 有哪些奇葩的相亲经历,是比较让人怀疑人生的? 你有过奇葩的相亲经历吗? 奇葩相亲事件频频出现,如今相亲还靠谱吗? 你有过什么奇葩的相亲经历?相亲真的能找到真爱吗?