x、y独立同分布随机变量,x+y与x-y独立,Ex=0,Dx=1,证明x~N(0,1)
发布网友
发布时间:2022-05-21 17:51
我来回答
共1个回答
热心网友
时间:2023-10-09 18:22
下面给出利用特征函数所进行的严格证明。
证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方)。由于X和Y是相互独立同分布的,X+Y和X-Y是相互独立的,利用特征函数的性质得:
h_{X}(2t)=h_{2X}(t)=h_{(X+Y)+(X-Y)}(t)=h_{(X+Y)}(t)*h_{(X-Y)}(t) (注:*是乘以号)
=[h_{X}(t)]^3*h_{X}(-t) (1)
将上式中的t取为-t得:
h_{X}(-2t)=[h_{X}(-t)]^3*h_{X}(t) (2)
为了简化记号,在不会产生误会的前提下,将X的特征函数h_{X}(t)]简记为h(t)]。令
g(t)=h(t)/h(-t),
由(1)和(2)得
g(2t)=[g(t)]^2
由X的数学期望为0,易得g’(0)=0。因此:
g(t)=[g(t/2)]^2=[g(t/(2^2))]^(2^2)=...=[g(t/(2^n))^(2^n)
=[g(0)+h’(0)t/(2^n)+o(t/(2^n))]^(2^n) (注:记号“o(x)”表示“x的高阶无穷小”)
=[1+o(t/(2^n))]^(2^n) 趋向于 1 (当n趋于正无穷大时)
所以g(t)恒等于1,也即h_{X}(t)=h_{-X}(t)对任意t成立,换言之,X与-X具有相同的特征函数。由此可将(1)写成:
h(2t)=[h(t)]^4
进而得:
h(t)=[h(t/2)]^4=[h(t/(2^2))]^(4^2)=...=[h(t/(2^n))]^(4^n)
由泰勒公式,并由h(0)=1,h'(0)=E(X)=0,h''(0)=-E(X^2)=-Var(X)=1,得:
h(t)=[h(t/(2^n))]^(4^n)
=[h(0)+h’(0)*t/(2^n)+(1/2)*h’’(0)*t^2/(4^n)+o(t^2/(4^n))]^(4^n)
=[1-(1/2)t^2/(4^n)+ o(t^2/(4^n))]^(4^n) 趋向于 e^(-t^2/2) (当n趋于正无穷大时)
即 h(t)=e^(-t^2/2),这正是标准正态分布随机变量的特征函数,所以X服从N(0,1)。
值得一提的是,若假定X是连续型随机变量,则可利用密度函数的性质进行证明。当然利用特征函数进行证明是更一般的方法,无需事先假定X为连续型的随机变量。