发布网友 发布时间:2022-04-22 00:26
共1个回答
热心网友 时间:2023-09-20 22:36
在理论上n个独立同分布的随机变量,都服从正态分布,那么平方和服从的分布就是自由度为n的卡方分布。
若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其卡方分布分布规律称为χ2(n)分布(chisquare distribution)。
其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。
补充:
χ2分布在一象限内,呈正偏态,随着参数 n 的增大,χ2分布趋近于正态分布。
χ2分布的均值为自由度 n,记为 Eχ2=n,这里符号“E”表示对随机变量求均值;χ2分布的方差为2倍的自由度(2n),记为 Dχ2=2n,这里符号“D”表示对随机变量求方差。
从χ2分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。
χ2分布具有可加性:若有K个服从χ2分布且相互独立的随机变量,则它们之和仍是χ2分布,新的χ2分布的自由度为原来K个χ2分布自由度之和。表示为:
χ2分布是连续分布,但有些离散分布也服从χ2分布,尤其在次数统计上非常广泛。