发布网友 发布时间:2022-04-21 23:55
共2个回答
热心网友 时间:2022-06-30 14:16
1. 确立目标
无论何时发生任何需求,我们首先都需要确定业务目标,评估情况,确定数据挖掘目标,然后根据需求生成项目计划。在此阶段定义业务目标。
2. 寻找数据
对于进一步的过程,我们需要收集初始数据,描述和探索数据,最后验证数据质量以确保它包含我们所需的数据。从各种来源收集的数据将根据其应用和此阶段对项目的需求进行描述,这也称为数据浏览,对于验证所收集数据的质量是必要的。
3. 数据整理
从最后一步收集的数据中,我们需要根据需要选择数据,对其进行清理,构造以获取有用的信息,然后将其整合在一起。
最后,我们需要格式化数据以获取适当的数据。选择数据,清理数据并将其集成为最终确定的格式,以便在此阶段进行分析。
4. 数据建模
收集数据后,我们对其进行数据建模。为此,我们需要选择一种建模技术,生成测试设计,构建模型并评估构建的模型。建立数据模型以分析数据中各种选定对象之间的关系,建立测试用例以评估模型,并在此阶段对数据进行测试和实施。
5. 数据评估
在这里,我们评估最后一步的结果,检查错误范围,并确定接下来要执行的步骤。我们评估测试用例的结果,并回顾此阶段的错误范围。
6. 部署
我们需要计划部署,监视和维护,并生成最终报告并审查项目。在此阶段,我们将部署分析结果,这也称为审查项目。
关于如何高效地进行数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于如何高效地进行数据分析?的相关内容,更多信息可以关注环球青藤分享更多干货
热心网友 时间:2022-06-30 15:34
付费内容限时免费查看回答你好,一探讨需求在开始分析数据或深入研究分析技术之前,与团队里的所有小伙伴一起坐下来,确定主要活动或战略目标是很关键的,需要从根本上了解哪些类型最有利于发展,或哪些数据对发展的前景最有帮助。提问有效的数据分析
回答2确定问题一旦确定了核心目标,你应该考虑哪些问题需要被回答来帮助你完成你的目标。为了帮助提出正确的问题并确保数据有用,提出问题、寻解答案是必不可少的。3收集数据在为数据分析方法提供了真正的指导,并知道了需要回答哪些问题来获取可用信息中的最佳价值后,应该决定最有价值的数据源并开始收集,这是所有数据分析技术中最基础的一步。
4设置KPI设置一系列关键绩效指标(KPI),这些指标可以在许多关键领域中跟踪,衡量和塑造您的进度。KPI对于定性研究中的数据分析方法和定量研究中的数据分析方法都是至关重要的,它对于督促自己及时完成数据分析目标有着重要作用。
五忽略无用数据六统计分析