发布网友 发布时间:2022-05-16 21:56
共2个回答
热心网友 时间:2023-09-12 17:19
证明三角形的三条中线交于一点:
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE⊥AC于点E,CF⊥AB于点F,且BE交CF于点H,连接AH并延长交BC于点D.现在我们只要证明AD⊥BC即可。
因为CF⊥AB,BE所以 四边形BFEC为圆内接四边形.四边形AFHE为圆内接四边形。
以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即AD⊥BC。
三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。由定义可知,三角形的中线是一条线段。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形中线分得的两个三角形面积相等。
参考资料:百度百科-三角形中线
热心网友 时间:2023-09-12 17:19
用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有