如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长...
发布网友
发布时间:2024-10-08 06:03
我来回答
共5个回答
热心网友
时间:2024-11-06 17:59
解:(1)取AC中点P,连接PF,PE,
可知PE=AB2,
PE∥AB,
∴∠PEF=∠ANF,
同理PF=CD2,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.
(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=12AB,
同理,HE∥CD,HE=12CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
即△AGD是直角三角形.
热心网友
时间:2024-11-06 17:59
前面给的提示蛮多的,在回答你的问题的时候,我又学了点东西,呵呵
(1)△OMN 为等腰三角形
(2)△AGD 为有一个角为30°的直角三角形
证明:连接BD,取BD中点I,连接FI,EI,因为E,F为BC和AD的中点
所以IE//DC IF//AB IE=1/2*DC=1/2*AB=IF ∠IEF=∠EFC=60°
∠AGF=∠IFE=∠IEF=60°
∠AFG=∠EFC=60°
所以△AGF等边.
AD=2AF
所以GF=FD
所以∠GDF=1/2*∠GDA=30°
所以∠AGD=180-30°-60°=90°
所以△AGD为有一个角为30°的直角三角形
热心网友
时间:2024-11-06 17:51
解:(1)取AC中点P,连接PF,PE,
可知PE=
AB2
,
PE∥AB,
∴∠PEF=∠ANF,
同理PF=
CD2
,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.
(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=
12
AB,
同理,HE∥CD,HE=
12
CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
即△AGD是直角三角形。
参考的网址是(http://www.jyeoo.com/math/ques/detail/c139c5f5-855b-498f-8dda-4d60e9f6e5fa?a=1)
希望采纳
热心网友
时间:2024-11-06 17:59
证明:如图连结 ,取 的中点 ,连结 , 1分
是 的中点,
, ,
.
同理, ,
.
,
. 1分
,
,
是等边三角形. 1分
,
,
热心网友
时间:2024-11-06 17:50
解:(1)取AC中点P,连接PF,PE,
可知PE=
AB
2
,
PE∥AB,
∴∠PEF=∠ANF,
同理PF=
CD
2
,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.
(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=
1
2
AB,同理,HE∥CD,HE=
1
2
CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°