发布网友 发布时间:2024-10-08 08:44
共5个回答
热心网友 时间:2024-11-05 09:43
limx->0f(x)/(1-cosx)=2。
∵x->0分母1-cosx→0。
极限=2,f(0)→0。
洛必达法则:
lim(x->0)f(x)/(1-cosx)=lim(x->0)f'(0)/sin0,分母依旧为0,极限存在,f'(0)=0。
继续求导:=lim(x->0)f''(0)/cos0=2。
∴f''(0)=2>0。
∴f(0)=0为极小值。
扩展资料:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
热心网友 时间:2024-11-05 09:39
limx->0f(x)/(1-cosx)=2热心网友 时间:2024-11-05 09:41
前面直接用洛必达的不对,因为题目没有提到且没办法推出f(x)在x=0的某邻域内可导,只是在某邻域内连续而已。本题主要通过函数连续的定义、导数定义、函数极限的保号性、极值定义求解。注意判定极值的时候,不能用极值的三个充分条件判定,因为他们的前提都是在x0的某邻域内可导。
热心网友 时间:2024-11-05 09:45
由于1-cosx在x=0的左邻域与右邻域内都有limx→0 1-cosx>0 由保号性与连续性可知邻域内的点有limx→0 f(x)=f(x)>0=f(0) 即f(0)是极小值点热心网友 时间:2024-11-05 09:40
limx->0f(x)/(1-cosx)=2。
∵x->0分母1-cosx→0。
极限=2,f(0)→0。
洛必达法则:
lim(x->0)f(x)/(1-cosx)=lim(x->0)f'(0)/sin0,分母依旧为0,极限存在,f'(0)=0。
继续求导:=lim(x->0)f''(0)/cos0=2。
∴f''(0)=2>0。
∴f(0)=0为极小值。
扩展资料:
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。