演绎推理: 已知a,b,c为正实数,求证(a+b+c)×(1/a+1/b+1/c)>=9
发布网友
发布时间:2024-10-07 04:54
我来回答
共4个回答
热心网友
时间:2024-12-15 01:54
(a+b+c)(1/a+1/b+1/c)
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1(a+c)/b+1(a+b)/c
=3+b/c+c/b+a/c+c/a+a/b+b/a
>=3+2+2+2=9问=3+b/c+c/b+a/c+c/a+a/b+b/a
这一步怎么出来?
回答(a+b+c)(1/a+1/b+1/c)
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1+(a+c)/b+1+(a+b)/c
=3+b/a+c/a+a/b+c/b+a/c+b/c
=3+b/c+c/b+a/c+c/a+a/b+b/a
问3+b/c+c/b+a/c+c/a+a/b+b/a
怎么变成3+2+2+2 ? 回答3+b/c+c/b+a/c+c/a+a/b+b/a
>=3+2√(b/c*c/b)+2√(a/c*c/a)+2√(b/a*a/b)
=3+2+2+2
=9
热心网友
时间:2024-12-15 01:54
乘开以后,出现一个3然后加上六个abc表示的分式,分成三对用均值不等式,a/b+b/a>=2,三组加起来大于等于6,加上3,就是大于等于9
热心网友
时间:2024-12-15 01:55
(a+b+c)(1/a+1/b+1/c)
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1+(a+c)/b+1+(a+b)/c
=3+b/a+c/a+a/b+c/b+a/c+b/c
=3+b/c+c/b+a/c+c/a+a/b+b/a
>=3+2√(b/c*c/b)+2√(a/c*c/a)+2√(b/a*a/b)
=3+2+2+2
=9
热心网友
时间:2024-12-15 01:55
方法一:柯西不等式
方法二:展开,原式=(a/b+b/a)+(c/b+b/c)+(c/a+a/c)+3
>=2+2+2+3
=9