三角形的重心,外心,内心,垂心有什么特点
发布网友
发布时间:2022-05-07 07:47
我来回答
共2个回答
热心网友
时间:2023-10-21 09:34
外心是三条垂直平分线(也就是中垂线)的交点。
内心是三条内角平分线的交点
内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心:是高的交点。对于等边三角形,所有心都重合,这点称为中心
热心网友
时间:2023-10-21 09:35
重心是三角形三边中线的交点
重心到顶点的距离与重心到对边中点的距离之比为2:1
重心和三角形3个顶点组成的3个三角形面积相等。
重心到三角形3个顶点距离的平方和最小。
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均
三角形的三条高的交点叫做三角形的垂心。
锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
内心是三角形三条内角平分线的交点,即内切圆的圆心。
内心到三边距离相等(为内切圆半径)
若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。
直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。
双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。
外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
到外心到三角形的三个顶点距离相等
热心网友
时间:2023-10-21 09:34
外心是三条垂直平分线(也就是中垂线)的交点。
内心是三条内角平分线的交点
内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心:是高的交点。对于等边三角形,所有心都重合,这点称为中心
热心网友
时间:2023-10-21 09:35
重心是三角形三边中线的交点
重心到顶点的距离与重心到对边中点的距离之比为2:1
重心和三角形3个顶点组成的3个三角形面积相等。
重心到三角形3个顶点距离的平方和最小。
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均
三角形的三条高的交点叫做三角形的垂心。
锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
内心是三角形三条内角平分线的交点,即内切圆的圆心。
内心到三边距离相等(为内切圆半径)
若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。
直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。
双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。
外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
到外心到三角形的三个顶点距离相等