二次根式如何化简?
发布网友
发布时间:2022-05-07 07:05
我来回答
共2个回答
热心网友
时间:2023-10-21 09:47
化简这些式子的依据实际就是一个:√a²=|a|,并理解绝对值的意义。注意到这一点一般就不会出现错误。但还有一些特殊情况如下。
1·。 a*√(-1/a)
∵被开方数-1/a>0,∴ a〈0
∴原式=a√(-a/a²)=a*1/|a| *√(-a)=a*1/(-a)√(-a)=-√(-a)
在这里运用了一个“隐含条件”,即已知式子应当有意义,∴被开方数-1/a>0
另外“负数的绝对值是他的相反数”也很重要。
2.已知a<b,化简二次根式根号(-a³b)
√(-a³b)=√[a²(-ab)]=|a|√(-ab)=-a√(-ab)
这个题的条件a<b并没有直接确定a和b的正负,但由被开方数-a³b≥0知,a和b中一定有一个负数,那么负数只能是a。
3.xy<0,则√(x²y)
由.xy<0说明,x与y是一正一负。由被开方数x²y≥0,而x²≥0,所以必有y>0,所以x必定是负数。
原式=|x|√y=-x√y
看来你这一组题的特点是除了注意化简根号的公式、绝对值的定义外,所谓“隐含条件”就显得特别重要,即已知式子中的被开方数必须大于或等于0.
热心网友
时间:2023-10-21 09:48
二次根式怎么化简