发布网友 发布时间:2024-10-02 02:22
共1个回答
热心网友 时间:2024-11-15 18:13
模型量化主要包括三个步骤:权重量化、中间特征图量化和可能需要的量化感知训练。TensorFlow Lite和NVIDIA TensorRT是常用工具,它们基于每层参数的最大最小值进行量化,但忽略了层间依赖,可能导致精度损失并需要额外数据进行调整。针对不同规模的模型,小模型量化训练更为推荐。
在实践中,我们首先通过TensorFlow训练一个手写数字模型。量化过程分为两种:1)PTQ(Post Training Quantization),训练后量化,适用于参数冗余高的大模型,精度损失较小;2)QAT(Quantization Aware Training),量化训练,过程复杂,适用于小模型,量化后精度损失约1-2个点。量化后的模型以.tflite格式存储,可以与原始.pb格式互转。
为了评估量化效果,我们使用MobilenetV1模型进行推理,对比fp32精度和量化后的模型输出。通过余弦相似度计算程序,比较量化前后模型的输出。尽管存在一些问题,如量化后的模型在x86平台上可能效果不佳,但后续将进行更深入的研究,包括整理手写体数字模型的推理过程代码,以及比较TensorRT和微软NNI的量化方案。
以下是相关代码和文件清单:
对于发现的问题,如推理输出类别差异,已定位为代码读取图片机制问题,待解决。后续将进行系列文章的深入探讨,包括其他量化工具的对比分析。