发布网友 发布时间:2024-10-01 18:56
共1个回答
热心网友 时间:2024-10-18 01:17
证明:(1)连接AC,BD交于点O,连接OE,则AO=OC,∴OE是△PAC的中位线,
∴OE//AP,∴PA//平面BDE
(2)AC⊥BD,又PD⊥AC,∴AC⊥平面PBD,∴AC⊥DF
(3)AD⊥平面PDC,AD//BC,∴BC⊥平面PDC,又PD=DC,∴CE⊥DE,∴∠BEC即为所求角,其正切值为BC/EC=DC/EC=√2.∴余弦值为√3/3
热心网友 时间:2024-10-18 01:24
证明:(1)连接AC,BD交于点O,连接OE,则AO=OC,∴OE是△PAC的中位线,
∴OE//AP,∴PA//平面BDE
(2)AC⊥BD,又PD⊥AC,∴AC⊥平面PBD,∴AC⊥DF
(3)AD⊥平面PDC,AD//BC,∴BC⊥平面PDC,又PD=DC,∴CE⊥DE,∴∠BEC即为所求角,其正切值为BC/EC=DC/EC=√2.∴余弦值为√3/3