如图,抛物线与x轴交于a,b两点,a(-1,0),b(2,0)与y轴交于点c(0,-2)
发布网友
发布时间:2024-10-02 15:39
我来回答
共2个回答
热心网友
时间:2024-10-06 06:29
解:
(1) x1,x2是方程x2-4x-12=0的两个根,抛物线的解析式可表示为:
y = a(x² - 4x -12)
将与y轴交点C(0,-4) 代入得:
-4 = -12a ==> a = 1/3
因此抛物线的解析式为:
y = (x² - 4x -12)/3
(2) 设M点坐标为 M(x3, 0), x1≤x3≤x2;
∵ x1,x2是方程x2-4x-12=0的两个根, x1 < x2
∴ x1 = -2; x2 = 6
|AM| = x3 - x1 = x3 + 2
|MB| = x2 - x3 = 6 - x3
|AB| = x2 -x1 = 8
SΔABC = 1/2 *|AB|*|yc| = 1/2 *8* 4 = 16
SΔMBC = 1/2* |MB|*||yc| = 2(6-x3)
∵ MN//BC ==> ΔAMN∽ΔABC
∴ SΔAMN/SΔABC = (|AM|/|AB|)² = (x3+2)²/64
==>SΔAMN = SΔABC * (x3+2)²/64 = (x3+2)²/4
∴ SΔCMN = SΔABC - SΔMBS - ΔAMN
= 16 - 2(6-x3) - (x3+2)²/4
= 4 - (x3 -2)²/4
因此:当 x3 =2 时,ΔCMN面积最大,最大值为4;
此时M坐标为 M(2,0)
(3) 由抛物线解析式 y = (x² - 4x - 12)/3,可得D点纵坐标 k = -4
因此D点坐标为:D(4, -4);
设动点E坐标为E(x4, y4), 则:y4 = (x4² - 4*x4 - 12)/3
F点坐标为 F(x5, 0);则ADEF构成平行四边形分一下三种情况
① AD, EF 为对角线则有:(平行四边形对角线互相平分==>AD,EF中点相同)
x1 + xd = x4 +x5; ==> -2 + 4 = x4 +x5
y1 + yd = y4 + 0;==> 0 - 4 = (x4² - 4*x4 - 12)/3
整理:
x4 +x5 = 2
x4² - 4*x4 = 0
解得: x4 = 0;x5 =2
或 x4 = 4;x5 = -2 (E点与D重合,舍去)
因此 E点坐标为 E(0, -4),F坐标为F(2,0)
② AE, DF 为对角线则有:(AE的中点与DF的中点坐标相同)
x1 + x4 = xd +x5; ==> -2 + x4 = 4 +x5
y1 + y4 = yd + 0;==> 0 + (x4² - 4*x4 - 12)/3 = - 4
整理:
x4 -x5 = 6
x4² - 4*x4 = 0
解得: x4 = 0;x5 =-2
或 x4 = 4;x5 = -2 (E点与D重合,舍去)
因此 E点坐标为 E(0, -4),F坐标为F(-2,0)
因F点与A点重合,因此AE, DF 为对角线不能构成平行四边形;
③ AF, DE 为对角线则有:(AF,DE中点相同)
x1 + x5 = x4 +xd; ==> -2 + x5 = x4 + 4
y1 + 0 = y4 + yd;==> 0 + 0 = (x4² - 4*x4 - 12)/3 - 4
整理:
x4 -x5 = -6
x4² - 4*x4 - 24 = 0
解得: x4 = 2+2√7;x5 =8+2√7
或 x4 = 2-2√7;x5 =8-2√7
因此所求坐标为 E( 2+2√7, 2√3/3),F(8+2√7,0)
或 E( 2-2√7, 2√3/3),F(8-2√7,0)
综合以上分析,ADEF能够构成平行四边形的点有:
E(0, -4),F(2,0);
E( 2+2√7, 2√3/3),F(8+2√7,0)
E( 2-2√7, 2√3/3),F(8-2√7,0)
热心网友
时间:2024-10-06 06:35