...1)求sin平方x+sin2x/cos平方x+cos2x(2)求tan(x-5π/4)_百度知 ...
发布网友
发布时间:2024-10-11 23:28
我来回答
共2个回答
热心网友
时间:2024-10-14 10:07
解:∵0 <x<π/2
∴cosx>0
∵sinx=4/5
∴cosx=√(1-sin²x)=3/5
tanx=sinx/cosx=(4/5)/(3/5)=4/3
故(1)(sin²x+sin(2x))/(cos²x+cos(2x))
=(sin²x+2sinxcosx)/(cos²x+cos²x-sin²x)
=(sin²x+2sinxcosx)/(2cos²x-sin²x)
=((4/5)²+2(4/5)(3/5))/(2(3/5)²-(4/5)²)
=20;
(2)tan(x-5π/4)=-tan(5π/4-x) (应用诱导公式)
=-tan(π+π/4-x)
=tan(π/4-x) (应用诱导公式)
=[tan(π/4)-tanx]/[1+tan(π/4)*tanx]
=(1-4/3)/(1+4/3)
=-1/7。
热心网友
时间:2024-10-14 10:06
解(1)sin平方x+sin2x/cos平方x+cos2x=(4/5)²+2sinxconx/con²x+1-2sin²x=(4/5)²+2tanx+1-2(4/5)²=(4/5)²+2×4/3+1-2(4/5)²=11/3-16/25=227/75
(2)tan(x-5π/4)=[tanx-tan(5π/4)]/[1+tanx×tan(5π/4)]=(4/3-1)/[1+(4/3)×1]=1/7