问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

一元一次方程、不等式的应用题,带过程答案。

发布网友 发布时间:2022-05-07 11:12

我来回答

4个回答

热心网友 时间:2023-10-28 09:43

一元一次方程应用题练习
要点1.找出相等关系,2.把要求的未知量(或间接的)当做已知量使用,3.用含有未知数的代数式连同数字把相等关系表示出来.就列出了方程,解这个方程后可得答案。
要记住:学道理,只要初一把道理学会了,以后会得心应手的。

1.有一个班的同学去某游乐园划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐 9人。这个班共有多少名学生?
相等关系:无论增加或减少船只,学生的人数不变。
增加船后的载人量=减少船后的载人量
设计划用船x条,增加后的船只为(x+1) 所载学生为6(x+1)
减少后的船只为(x-1) 所载学生为9(x-1)
可列方程:自己完成。
要求:解答过程要完整。

2.某车间22名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母2000个,一个螺栓要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
相等关系:,一个螺栓要配两个螺母,如果把螺栓数量×2=螺母的数量
如果设分配x人生产螺栓,那么生产螺母的有(22-x)人
X人每天生产螺栓数1200x, (22-x)人生产螺母数2000(22-x)
可列方程:自己完成。
要求:解答过程要完整。

3、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余的部分由甲、乙合作,需要几小时完成?
工作问题相等关系 甲干的份数+乙干的份数=1 (完成是1,没完成做多少是多少,如完成2/3 等。)
如果设剩余的部分由甲、乙合作,需要x时完成
甲干了(4/20+x/20 ) 乙干了x/20
可列方程:自己完成。
要求:解答过程要完整

4、某单位开展植树活动,由一个人植树要80小时完成,现由一部分人先植树5小时,由于单位有紧急事情,再增加2人,且必须在4小时之内完成植树任务,这些人的工作效率相同,应先安排多少人植树?
相等关系:植树总工时不变,即1人干用时=多人干用时
如果设应先安排x人植树 增加后2人后植树人数有(x+2)人
X人5小时干的+(X+2)人4小时干的=一人80小时干的。
可列方程:自己完成。
要求:解答过程要完整
5、甲、乙、丙三位同学向贫困地区的少年儿童捐献图书,已知这三位同学捐赠图书册数的比为5:6:9。他们共捐书320册,那么这三位同学各捐书多少册?
相等关系:甲捐的书+乙捐的书+丙捐的书=共捐书数
设一份为X,则甲捐书5x本,乙…,丙…
可列方程:自己完成。
要求:解答过程要完整

6、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?
相等关系:新数-原数=18
设原来两位数的个位上的数字为x, 则十位上的数字为(10-x)
新数是10x+(10-x) 原数是10(10-x)+ x
可列方程:自己完成。
要求:解答过程要完整

7某单位计划“五一”组织员工到某地旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。该单位在联系时,A旅行社表示可给予每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠。
(1)、当该单位旅游人数多少时,支付给A、B两旅行社的总费用相同。
(2)、若该单位共有30人参加此次旅游,应选择哪家旅行社,使总费用更少?
(1)相等关系:支付给A、B两旅行社的总费用相同
设当该单位旅游人数x人时支付给A、B两旅行社的总费用相同
支付给A旅行社的300×75%x元 支付给B旅行社的300×80%(x-1)元
(2)、分别计算 A: 300×30×75% B:……

8、一队步兵以5.4千米/小时的速度前进,通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵队列的长度是多少?
相等关系:通讯员到队头的时间+通讯员回队尾的时间=10分钟
设步兵队列的长度是千米(单位要统一)
同向从队尾到队头:队伍的长度÷速度差 逆向从队头到队尾÷速度和
解答过程要完整

9. 甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?
相等关系:调动后,甲队人数恰好是乙队人数的2倍
设从乙队调走了x人到甲队 乙队剩余人数×2=甲队人数
解答过程要完整

10.A、B两地相距1.8㎞,甲、乙两人从A、B两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。
相等关系:相遇说明两人走了.A、B两地相距。甲走的+乙走的= A、B两地距离

11、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?
相等关系:(和8题相似,相向)只不过队伍的长是两列火车的长的和。
两列火车的长的和÷速度和=18秒

12、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时。求两城之间的距离。
相等关系:已知时间,可设速度,表示距离 两城之间的距离=两城之间的距离
(两城之间的距离=速度(静速+风速)×时间, 顺风
两城之间的距离=速度(静速-风速)×时间 逆风)

13、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.
(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?
(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?
相等关系: (1)环行跑道反向出发,两人跑的路程和等于跑道长
设x分钟后他们再相遇
(2)环行跑道同向出发,两人跑的路程差等于跑道长
设x分钟后他们再相遇
解答过程要完整
14、有两种移动电话手机收费卡的收费方式如下表:
全球通卡 神州行卡
月租费 50.00元/月 0.00元/月
通话费 0.40元/分 0.60元/分
若你家长买了一部手机,你应该怎样替你的家长选择一种手机卡?
(与7相似)要看使用时间的长短,找出一个费用相等的点,然后选。
相等关系:全球通卡费用=神州行卡费用
设使用x分钟费用相等
全球通卡费用:(50+0.4x)元 神州行卡费用0.6x元

15.一辆慢车速度为48千米/时,一辆快车速度为55千米/时,慢车在前,快车在后,两车间距离为21千米,同时出发快车追上慢车需要多少小时?
相等关系:快车走的路程-慢车走的路程=两车间距离

16.某市为鼓励市民节约用水,作出如下规定:
用水量 收费
不超过10m3 0.5元/m3
10m3以上每增加1m3 1.00元/m3
小明家9月份缴水费20元,他家9月实际用水多少m3?
相等关系:两部分的和=20元

17.(10分)景山中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.
(1)求参加春游的人数?
(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?
(1) 60座客车少租1辆,并且剩余15个座位.说明租用45座和余下的15座被分摊到几辆60座客车上,而60座客车比45座客车可多载15人。
所以:节约位置÷60座客车比45座客车可多的位置=60座客车的租车数。
(2)分别计算做一比较(也可以一次计算看差的正负)
60座客车 300×60座客车
或60座客车-300×60座客车=(正数后面的合算,否则反之)

热心网友 时间:2023-10-28 09:43

一元一次方程应用题练习
要点1.找出相等关系,2.把要求的未知量(或间接的)当做已知量使用,3.用含有未知数的代数式连同数字把相等关系表示出来.就列出了方程,解这个方程后可得答案。
要记住:学道理,只要初一把道理学会了,以后会得心应手的。

1.有一个班的同学去某游乐园划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐 9人。这个班共有多少名学生?
相等关系:无论增加或减少船只,学生的人数不变。
增加船后的载人量=减少船后的载人量
设计划用船x条,增加后的船只为(x+1) 所载学生为6(x+1)
减少后的船只为(x-1) 所载学生为9(x-1)
可列方程:自己完成。
要求:解答过程要完整。

2.某车间22名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母2000个,一个螺栓要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
相等关系:,一个螺栓要配两个螺母,如果把螺栓数量×2=螺母的数量
如果设分配x人生产螺栓,那么生产螺母的有(22-x)人
X人每天生产螺栓数1200x, (22-x)人生产螺母数2000(22-x)
可列方程:自己完成。
要求:解答过程要完整。

3、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余的部分由甲、乙合作,需要几小时完成?
工作问题相等关系 甲干的份数+乙干的份数=1 (完成是1,没完成做多少是多少,如完成2/3 等。)
如果设剩余的部分由甲、乙合作,需要x时完成
甲干了(4/20+x/20 ) 乙干了x/20
可列方程:自己完成。
要求:解答过程要完整

4、某单位开展植树活动,由一个人植树要80小时完成,现由一部分人先植树5小时,由于单位有紧急事情,再增加2人,且必须在4小时之内完成植树任务,这些人的工作效率相同,应先安排多少人植树?
相等关系:植树总工时不变,即1人干用时=多人干用时
如果设应先安排x人植树 增加后2人后植树人数有(x+2)人
X人5小时干的+(X+2)人4小时干的=一人80小时干的。
可列方程:自己完成。
要求:解答过程要完整
5、甲、乙、丙三位同学向贫困地区的少年儿童捐献图书,已知这三位同学捐赠图书册数的比为5:6:9。他们共捐书320册,那么这三位同学各捐书多少册?
相等关系:甲捐的书+乙捐的书+丙捐的书=共捐书数
设一份为X,则甲捐书5x本,乙…,丙…
可列方程:自己完成。
要求:解答过程要完整

6、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?
相等关系:新数-原数=18
设原来两位数的个位上的数字为x, 则十位上的数字为(10-x)
新数是10x+(10-x) 原数是10(10-x)+ x
可列方程:自己完成。
要求:解答过程要完整

7某单位计划“五一”组织员工到某地旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。该单位在联系时,A旅行社表示可给予每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠。
(1)、当该单位旅游人数多少时,支付给A、B两旅行社的总费用相同。
(2)、若该单位共有30人参加此次旅游,应选择哪家旅行社,使总费用更少?
(1)相等关系:支付给A、B两旅行社的总费用相同
设当该单位旅游人数x人时支付给A、B两旅行社的总费用相同
支付给A旅行社的300×75%x元 支付给B旅行社的300×80%(x-1)元
(2)、分别计算 A: 300×30×75% B:……

8、一队步兵以5.4千米/小时的速度前进,通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵队列的长度是多少?
相等关系:通讯员到队头的时间+通讯员回队尾的时间=10分钟
设步兵队列的长度是千米(单位要统一)
同向从队尾到队头:队伍的长度÷速度差 逆向从队头到队尾÷速度和
解答过程要完整

9. 甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?
相等关系:调动后,甲队人数恰好是乙队人数的2倍
设从乙队调走了x人到甲队 乙队剩余人数×2=甲队人数
解答过程要完整

10.A、B两地相距1.8㎞,甲、乙两人从A、B两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。
相等关系:相遇说明两人走了.A、B两地相距。甲走的+乙走的= A、B两地距离

11、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?
相等关系:(和8题相似,相向)只不过队伍的长是两列火车的长的和。
两列火车的长的和÷速度和=18秒

12、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时。求两城之间的距离。
相等关系:已知时间,可设速度,表示距离 两城之间的距离=两城之间的距离
(两城之间的距离=速度(静速+风速)×时间, 顺风
两城之间的距离=速度(静速-风速)×时间 逆风)

13、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.
(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?
(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?
相等关系: (1)环行跑道反向出发,两人跑的路程和等于跑道长
设x分钟后他们再相遇
(2)环行跑道同向出发,两人跑的路程差等于跑道长
设x分钟后他们再相遇
解答过程要完整
14、有两种移动电话手机收费卡的收费方式如下表:
全球通卡 神州行卡
月租费 50.00元/月 0.00元/月
通话费 0.40元/分 0.60元/分
若你家长买了一部手机,你应该怎样替你的家长选择一种手机卡?
(与7相似)要看使用时间的长短,找出一个费用相等的点,然后选。
相等关系:全球通卡费用=神州行卡费用
设使用x分钟费用相等
全球通卡费用:(50+0.4x)元 神州行卡费用0.6x元

15.一辆慢车速度为48千米/时,一辆快车速度为55千米/时,慢车在前,快车在后,两车间距离为21千米,同时出发快车追上慢车需要多少小时?
相等关系:快车走的路程-慢车走的路程=两车间距离

16.某市为鼓励市民节约用水,作出如下规定:
用水量 收费
不超过10m3 0.5元/m3
10m3以上每增加1m3 1.00元/m3
小明家9月份缴水费20元,他家9月实际用水多少m3?
相等关系:两部分的和=20元

17.(10分)景山中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.
(1)求参加春游的人数?
(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?
(1) 60座客车少租1辆,并且剩余15个座位.说明租用45座和余下的15座被分摊到几辆60座客车上,而60座客车比45座客车可多载15人。
所以:节约位置÷60座客车比45座客车可多的位置=60座客车的租车数。
(2)分别计算做一比较(也可以一次计算看差的正负)
60座客车 300×60座客车
或60座客车-300×60座客车=(正数后面的合算,否则反之)

热心网友 时间:2023-10-28 09:43

一元一次方程应用题练习
要点1.找出相等关系,2.把要求的未知量(或间接的)当做已知量使用,3.用含有未知数的代数式连同数字把相等关系表示出来.就列出了方程,解这个方程后可得答案。
要记住:学道理,只要初一把道理学会了,以后会得心应手的。

1.有一个班的同学去某游乐园划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐 9人。这个班共有多少名学生?
相等关系:无论增加或减少船只,学生的人数不变。
增加船后的载人量=减少船后的载人量
设计划用船x条,增加后的船只为(x+1) 所载学生为6(x+1)
减少后的船只为(x-1) 所载学生为9(x-1)
可列方程:自己完成。
要求:解答过程要完整。

2.某车间22名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母2000个,一个螺栓要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
相等关系:,一个螺栓要配两个螺母,如果把螺栓数量×2=螺母的数量
如果设分配x人生产螺栓,那么生产螺母的有(22-x)人
X人每天生产螺栓数1200x, (22-x)人生产螺母数2000(22-x)
可列方程:自己完成。
要求:解答过程要完整。

3、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余的部分由甲、乙合作,需要几小时完成?
工作问题相等关系 甲干的份数+乙干的份数=1 (完成是1,没完成做多少是多少,如完成2/3 等。)
如果设剩余的部分由甲、乙合作,需要x时完成
甲干了(4/20+x/20 ) 乙干了x/20
可列方程:自己完成。
要求:解答过程要完整

4、某单位开展植树活动,由一个人植树要80小时完成,现由一部分人先植树5小时,由于单位有紧急事情,再增加2人,且必须在4小时之内完成植树任务,这些人的工作效率相同,应先安排多少人植树?
相等关系:植树总工时不变,即1人干用时=多人干用时
如果设应先安排x人植树 增加后2人后植树人数有(x+2)人
X人5小时干的+(X+2)人4小时干的=一人80小时干的。
可列方程:自己完成。
要求:解答过程要完整
5、甲、乙、丙三位同学向贫困地区的少年儿童捐献图书,已知这三位同学捐赠图书册数的比为5:6:9。他们共捐书320册,那么这三位同学各捐书多少册?
相等关系:甲捐的书+乙捐的书+丙捐的书=共捐书数
设一份为X,则甲捐书5x本,乙…,丙…
可列方程:自己完成。
要求:解答过程要完整

6、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?
相等关系:新数-原数=18
设原来两位数的个位上的数字为x, 则十位上的数字为(10-x)
新数是10x+(10-x) 原数是10(10-x)+ x
可列方程:自己完成。
要求:解答过程要完整

7某单位计划“五一”组织员工到某地旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。该单位在联系时,A旅行社表示可给予每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠。
(1)、当该单位旅游人数多少时,支付给A、B两旅行社的总费用相同。
(2)、若该单位共有30人参加此次旅游,应选择哪家旅行社,使总费用更少?
(1)相等关系:支付给A、B两旅行社的总费用相同
设当该单位旅游人数x人时支付给A、B两旅行社的总费用相同
支付给A旅行社的300×75%x元 支付给B旅行社的300×80%(x-1)元
(2)、分别计算 A: 300×30×75% B:……

8、一队步兵以5.4千米/小时的速度前进,通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵队列的长度是多少?
相等关系:通讯员到队头的时间+通讯员回队尾的时间=10分钟
设步兵队列的长度是千米(单位要统一)
同向从队尾到队头:队伍的长度÷速度差 逆向从队头到队尾÷速度和
解答过程要完整

9. 甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?
相等关系:调动后,甲队人数恰好是乙队人数的2倍
设从乙队调走了x人到甲队 乙队剩余人数×2=甲队人数
解答过程要完整

10.A、B两地相距1.8㎞,甲、乙两人从A、B两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。
相等关系:相遇说明两人走了.A、B两地相距。甲走的+乙走的= A、B两地距离

11、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?
相等关系:(和8题相似,相向)只不过队伍的长是两列火车的长的和。
两列火车的长的和÷速度和=18秒

12、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时。求两城之间的距离。
相等关系:已知时间,可设速度,表示距离 两城之间的距离=两城之间的距离
(两城之间的距离=速度(静速+风速)×时间, 顺风
两城之间的距离=速度(静速-风速)×时间 逆风)

13、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.
(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?
(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?
相等关系: (1)环行跑道反向出发,两人跑的路程和等于跑道长
设x分钟后他们再相遇
(2)环行跑道同向出发,两人跑的路程差等于跑道长
设x分钟后他们再相遇
解答过程要完整
14、有两种移动电话手机收费卡的收费方式如下表:
全球通卡 神州行卡
月租费 50.00元/月 0.00元/月
通话费 0.40元/分 0.60元/分
若你家长买了一部手机,你应该怎样替你的家长选择一种手机卡?
(与7相似)要看使用时间的长短,找出一个费用相等的点,然后选。
相等关系:全球通卡费用=神州行卡费用
设使用x分钟费用相等
全球通卡费用:(50+0.4x)元 神州行卡费用0.6x元

15.一辆慢车速度为48千米/时,一辆快车速度为55千米/时,慢车在前,快车在后,两车间距离为21千米,同时出发快车追上慢车需要多少小时?
相等关系:快车走的路程-慢车走的路程=两车间距离

16.某市为鼓励市民节约用水,作出如下规定:
用水量 收费
不超过10m3 0.5元/m3
10m3以上每增加1m3 1.00元/m3
小明家9月份缴水费20元,他家9月实际用水多少m3?
相等关系:两部分的和=20元

17.(10分)景山中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.
(1)求参加春游的人数?
(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?
(1) 60座客车少租1辆,并且剩余15个座位.说明租用45座和余下的15座被分摊到几辆60座客车上,而60座客车比45座客车可多载15人。
所以:节约位置÷60座客车比45座客车可多的位置=60座客车的租车数。
(2)分别计算做一比较(也可以一次计算看差的正负)
60座客车 300×60座客车
或60座客车-300×60座客车=(正数后面的合算,否则反之)

热心网友 时间:2023-10-28 09:44

2011-02-03 01:261.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?

设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时

2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米

3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。

4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米

.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米

热心网友 时间:2023-10-28 09:44

第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)

一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)
——合并同类项与移项

【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?

【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

======================================================================

热心网友 时间:2023-10-28 09:45

一次数学竞赛,共有16道选择题,评分方法是:每答对1题得6分,答错一题扣2分,不答得0分,小明有1道题没答,问他至少答对几道题,成绩才能在60分以上?

解:设他答对了x道题,则答错了16-1-x道,他的成绩为0*1+6x-2(15-x)化简为8x-30;只要8x-30>60;8x>90;x>90/8;因为x是整数,则x>11;所以至少要答对12道才60分以上

热心网友 时间:2023-10-28 09:44

2011-02-03 01:261.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?

设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时

2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米

3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。

4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米

.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米

热心网友 时间:2023-10-28 09:44

第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)

一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)
——合并同类项与移项

【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?

【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

======================================================================

热心网友 时间:2023-10-28 09:45

一次数学竞赛,共有16道选择题,评分方法是:每答对1题得6分,答错一题扣2分,不答得0分,小明有1道题没答,问他至少答对几道题,成绩才能在60分以上?

解:设他答对了x道题,则答错了16-1-x道,他的成绩为0*1+6x-2(15-x)化简为8x-30;只要8x-30>60;8x>90;x>90/8;因为x是整数,则x>11;所以至少要答对12道才60分以上

热心网友 时间:2023-10-28 09:44

2011-02-03 01:261.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?

设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时

2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米

3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。

4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米

.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米

热心网友 时间:2023-10-28 09:44

第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)

一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)
——合并同类项与移项

【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?

【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

======================================================================

热心网友 时间:2023-10-28 09:45

一次数学竞赛,共有16道选择题,评分方法是:每答对1题得6分,答错一题扣2分,不答得0分,小明有1道题没答,问他至少答对几道题,成绩才能在60分以上?

解:设他答对了x道题,则答错了16-1-x道,他的成绩为0*1+6x-2(15-x)化简为8x-30;只要8x-30>60;8x>90;x>90/8;因为x是整数,则x>11;所以至少要答对12道才60分以上
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
黎明杀机食人魔技能效果介绍介绍_黎明杀机食人魔技能效果介绍是什么_百 ... 黎明杀机怎么传授技能 2周岁宝宝感冒吃什么药 孩子可以吃小儿氨酚黄那敏颗粒能吃吗 回记绿豆糕如何制作口感更好? 回记绿豆糕的烹饪方法是怎样的? 回记绿豆糕的制作方法是怎样的? 河北回记绿豆糕的做法有哪些? 怎样做出地道且美味的回记绿豆糕? 回记绿豆糕有哪些复杂的制作工艺? 急求数学问题!!! 关于球赛的一元一次方程 数学建模 的一道题 帮帮忙呀 万分的感谢!! 解数学应用题: Frontier4.1软件如何做无效方程估计 (1+x)(1-5%)=1+14% 怎么解啊 为什么穿棉毛裤大腿会痒痒的 我今年66岁膝盖和腿部特别怕冷,一冷就感觉疼,夏季也要穿毛裤腿,运动时感觉好一些,是什么原因? 婴幼儿毛裤腿是开口的用扣扣的,瘦了怎编织加肥好看? 女士毛裤大腿起多少针合适囗? 毛裤腿怎么收口视频 新买的棉毛裤腿太小了,怎样撑大? 怎么给狗狗改衣服 如何留住优秀员工演讲稿 西克教的教义和来源 儒道佛的中心思想是什么?世界三大宗教的起源与发展又是怎样的?还有哪些常见的宗教? 女卫兵怎么还原头盔啊,现在都是警察兜帽 我是一企业员工,想写一编我在企业所感受的幸福为题你演讲稿 揭露日本二战如何对待英国,中国被俘士兵,最残酷当属 为什么电影电视剧中说印度人的时候总说印度阿三? gpp是什么意思? 恋爱app有哪些靠谱的? “nano gpp”是什么意思? 有好点的恋爱app吗?要高评分的 腐竹香菇汤的家常做法大全怎么做好 利用好每一厘米!把书桌、梳妆台嵌进定制衣柜里,有哪些优缺点? 腐竹香菇汤的做法,腐竹香菇汤怎么做好吃,腐竹 我要出去打印。用了wps的云字体,但是找不到在哪里。 花养了那么多,怎么摆放才有创意才好看? 喜欢读书的人都是怎么布置自己的书房的? 炒香菇瘦肉的做法,腐竹炒香菇瘦肉怎么做好 寝室里我没有自己的书桌,笔记本电脑没地方放,怎么办? 把桌子一角切一刀周长会变小吗 腐竹瘦肉粥怎么做好吃 冬菇腐竹炆猪肉怎么做? 如何做香菇腐竹炒肉片,最正宗香菇腐竹炒肉片的 香菇腐竹炒肉片的做法,香菇腐竹炒肉片怎么做 当孩子午睡尿床时,老师该怎么办 幼儿午睡尿床,作为老师你应该怎么办 宝宝在幼儿园午睡时老尿床怎么办