...x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
发布网友
发布时间:2024-10-08 18:20
我来回答
共3个回答
热心网友
时间:2024-10-08 18:53
此题关注二次函数的对称性!!!
A ,B关于对称轴x=2对称 又AB=2 所以A(1,0)B(3,0)
可根据交点式求出函数表达式
周长=AP+AC+PC 其中AC为定值,PA=PB 所以连接BC交对称轴即为P点 而周长=AC+BC
菱形要从两个角度考察
1、AB∥DE DE=2易得 考察AD是否为2
2、AB⊥DE 利用对角线相互垂直平分来判断 对称轴x=2垂直平分AB 则DE在对称轴上且被AB平分
热心网友
时间:2024-10-08 18:51
热心网友
时间:2024-10-08 18:50
嗯我错了,重新写
(1)y=x²+bx+c中a=1
设x=2和x轴交於M(2,0),根据对称性可知AM=BM=1
∴A(1,0),B(3,0)
∴y=(x-1)(x-3)=x²-4x+3
C(0,3)
(2)连接BC,则BC和对称轴交点为所求的P
周长=AC+AP+PC=AC+BC
勾股定理得AC=√10,BC=3√2,∴最小值为√10+3√2
(3)若AB为菱形的一边,则易证E(2,√3)
将直线AE向右平移2单位得D(4,√3)
但此时D不在抛物线上,∴AB不能为菱形的一边
若AB是菱形的对角线,则M是对角线交点
∴D(2,-1),E(2,1)满足题意