两个正方形的边长之和为18CM,边长之积为72cm,求这两个正方形的...
发布网友
发布时间:2024-10-08 19:09
我来回答
共4个回答
热心网友
时间:2024-10-25 15:59
设两个正方形的边长分别为x和y,则:
x+y=18
xy=72
所以x、y是方程a^2-18a+72=0的两根
(a-6)(a-12)=0
a=6或12
两个正方形面积分别为:36平方厘米和144平方厘米
热心网友
时间:2024-10-25 15:55
设边长分别为X1,X2:
则有:X1+X2=18
且 X1*X2=72
由韦达定理,X1和X2可以看成二元一次方程X^2-18X+72=0,的解;
由求根公式不难解出X1=6,X2=12,所以面积分别为36和144
热心网友
时间:2024-10-25 15:55
设两个正方形的边长分别为a和b, a>b
a+b=18 a=12
﹛ 解方程组得﹛
ab=72 b=6
所以两个正方形的面积分别为a²=12²=144(cm²) b²=6²=36(cm²)
热心网友
时间:2024-10-25 15:59
设两个正方形的边长分别为x和y,则:
x+y=18
xy=72
解得:x、y分别为6,12
两个正方形面积分别为:36平方厘米和144平方厘米
热心网友
时间:2024-10-25 16:02
设两个正方形的边长分别为x和y,则:
x+y=18
xy=72
所以x、y是方程a^2-18a+72=0的两根
(a-6)(a-12)=0
a=6或12
两个正方形面积分别为:36平方厘米和144平方厘米
热心网友
时间:2024-10-25 16:02
设两个正方形的边长分别为a和b, a>b
a+b=18 a=12
﹛ 解方程组得﹛
ab=72 b=6
所以两个正方形的面积分别为a²=12²=144(cm²) b²=6²=36(cm²)
热心网友
时间:2024-10-25 16:00
设边长分别为X1,X2:
则有:X1+X2=18
且 X1*X2=72
由韦达定理,X1和X2可以看成二元一次方程X^2-18X+72=0,的解;
由求根公式不难解出X1=6,X2=12,所以面积分别为36和144
热心网友
时间:2024-10-25 16:03
设两个正方形的边长分别为x和y,则:
x+y=18
xy=72
解得:x、y分别为6,12
两个正方形面积分别为:36平方厘米和144平方厘米