哪种液体火箭发动机不但发射成本低而且燃料也是完全环保无毒的?
发布网友
发布时间:2022-05-07 09:21
我来回答
共1个回答
热心网友
时间:2023-10-24 01:56
分类
按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。[1]
工作原理
液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。[1]
推力室
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过程生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约20MPa)、温度3000~4000℃,故需要冷却。推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。工作参数主要指推力大小、推进剂的混合比。[1]
推力室点火装置
选用固体火药点火为第一、二级发动机点火方式。
固体火药点火器通常是装有一个或几个固体推进剂的装药柱,利用电爆管起爆,在发动机启动过程中,在燃烧室和燃气发生器中,有烟火药燃烧产物形成能量很大的火炬,点燃经过头部进入燃烧室或燃气发生器的主推进剂混合物。
固体火药点火适合于各种非自燃推进剂的点火;点火可靠;点火装置简单,可选用的火药品种较多;与发动机供应系统无关,对喷注器结构影响小;使用维护方便。[1]
辅助推进系统
辅助推进系统是航天运载系统和航天器的重要组成部分,现已发展成为液体火箭推进技 术领域中的一个重要分支。辅助推进系统的功用包括:姿态控制、速度修正、轨道变换租修 正、位置保持、推进剂沉底以及航天器上的各种辅助动力装置等。这种推进系统要求在真空 和失重环境中可靠起动,能持续或脉冲工作,工作次数甚至可高达数十万次以上。
辅助推进系统除总冲要求极小的情况下采用气体喷射以外,大都采用单组元或双组元液 体推进剂发动机。
单组元阱催化分解发动机具有系统简单、响应灵敏、稳态和脉冲工作重复性好等优点,已广泛应用于各种航天器和运载系统的姿态控制以及正推、末速修正、推进剂沉底和位置保持等。
热心网友
时间:2023-10-24 01:56
分类
按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。[1]
工作原理
液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。[1]
推力室
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过程生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约20MPa)、温度3000~4000℃,故需要冷却。推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。工作参数主要指推力大小、推进剂的混合比。[1]
推力室点火装置
选用固体火药点火为第一、二级发动机点火方式。
固体火药点火器通常是装有一个或几个固体推进剂的装药柱,利用电爆管起爆,在发动机启动过程中,在燃烧室和燃气发生器中,有烟火药燃烧产物形成能量很大的火炬,点燃经过头部进入燃烧室或燃气发生器的主推进剂混合物。
固体火药点火适合于各种非自燃推进剂的点火;点火可靠;点火装置简单,可选用的火药品种较多;与发动机供应系统无关,对喷注器结构影响小;使用维护方便。[1]
辅助推进系统
辅助推进系统是航天运载系统和航天器的重要组成部分,现已发展成为液体火箭推进技 术领域中的一个重要分支。辅助推进系统的功用包括:姿态控制、速度修正、轨道变换租修 正、位置保持、推进剂沉底以及航天器上的各种辅助动力装置等。这种推进系统要求在真空 和失重环境中可靠起动,能持续或脉冲工作,工作次数甚至可高达数十万次以上。
辅助推进系统除总冲要求极小的情况下采用气体喷射以外,大都采用单组元或双组元液 体推进剂发动机。
单组元阱催化分解发动机具有系统简单、响应灵敏、稳态和脉冲工作重复性好等优点,已广泛应用于各种航天器和运载系统的姿态控制以及正推、末速修正、推进剂沉底和位置保持等。
热心网友
时间:2023-10-24 01:56
分类
按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。[1]
工作原理
液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。[1]
推力室
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过程生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约20MPa)、温度3000~4000℃,故需要冷却。推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。工作参数主要指推力大小、推进剂的混合比。[1]
推力室点火装置
选用固体火药点火为第一、二级发动机点火方式。
固体火药点火器通常是装有一个或几个固体推进剂的装药柱,利用电爆管起爆,在发动机启动过程中,在燃烧室和燃气发生器中,有烟火药燃烧产物形成能量很大的火炬,点燃经过头部进入燃烧室或燃气发生器的主推进剂混合物。
固体火药点火适合于各种非自燃推进剂的点火;点火可靠;点火装置简单,可选用的火药品种较多;与发动机供应系统无关,对喷注器结构影响小;使用维护方便。[1]
辅助推进系统
辅助推进系统是航天运载系统和航天器的重要组成部分,现已发展成为液体火箭推进技 术领域中的一个重要分支。辅助推进系统的功用包括:姿态控制、速度修正、轨道变换租修 正、位置保持、推进剂沉底以及航天器上的各种辅助动力装置等。这种推进系统要求在真空 和失重环境中可靠起动,能持续或脉冲工作,工作次数甚至可高达数十万次以上。
辅助推进系统除总冲要求极小的情况下采用气体喷射以外,大都采用单组元或双组元液 体推进剂发动机。
单组元阱催化分解发动机具有系统简单、响应灵敏、稳态和脉冲工作重复性好等优点,已广泛应用于各种航天器和运载系统的姿态控制以及正推、末速修正、推进剂沉底和位置保持等。