...π/6)+b(a>0,b∈R),且f(x)在区间[0,π/2]上的最大值和最小值分别为...
发布网友
发布时间:2024-10-12 06:30
我来回答
共2个回答
热心网友
时间:2024-10-26 19:47
(1) x∈[0, π/2]
2x-π/6∈[-π/6, 5π/6]
所以f(x)最大值=a+b=1 (1)
f(x)最小值=-a/2+b=-2 (2)
(1)-(2) 3a/2=3 a=2
代入(1) b=-1
(2) f(x/2)=2sin(x-π/6)-1=-1/3
sin(x-π/6)=1/3
即sinxcos(π/6)-sin(π/6)cosx=1/3
(√3/2)sinx-1/3=(1/2)cosx
平方(3/4)sin²x-(√3/3)sinx+1/9=(1/4)(1-sin²x)
sin²x-(√3/3)sinx-5/36=0
sinx=[(√3/3)±2√2/3]/2
∵x∈(π/2,π)
∴sinx>0
sinx=√3/6+√2/3
希望能帮到你,祝学习进步O(∩_∩)O
热心网友
时间:2024-10-26 19:49
f(x)在2kπ-π/2<=2x-π/6<=2kπ+π/2 即: kπ-π/6<=x<=kπ+π/3时是增函数
2kπ+π/2<=2x-π/6<=2kπ+3π/2 即 kπ+π/3<=x<=kπ+5π/6时是减函数
f(x)在[0,π/3)递增,在[π/3,π/2]递减
f(x)max=f(π/3)=a+b=1
f(0)= - a/2+b
f(π/2)=a/2+b
a>0,所以:
f(x)min= - a/2+b= - 2
(1)a=2,b=-1
(2)f(x)=2sin(2x-π/6)-1
f(x/2)=2sin(x-π/6)-1=-1/3
sin(x-π/6)=1/3
x∈(π/2,π),则cos(x-π/6)=?
sin(x)=sin((x-π/6)+π/6)=sin(x-π/6)cosπ/6+cos(x-π/6)sinπ/6=?
注:第二问只给了计算方法,没给计算结果,这是因为第二问给的条件有问题
f(x/2)=﹣1/3,x∈(π/2,π)的x是无解的。