发布网友 发布时间:2022-05-10 03:45
共2个回答
懂视网 时间:2022-05-10 08:07
fipy菲克定律是指在不依靠宏观的混合作用发生的传质现象时,描述分子扩散过程中传质通量与浓度梯度之间关系的定律。菲克定律是阿道夫·菲克(Adolf Fick)于1855年提出。
由菲克第二定律可以得到动态扩散的偏微分方程。求解可以得到浓度分布和流出曲线。
不确定这个问题有没有解析解,不过数值求解是一种较为通用的解决方法。
fipy是目前难得的还活着的PDE求解python包,作者根据官方示例改写本程序。
热心网友 时间:2022-05-10 05:15
有很多大学生问我,学习python有什么用呢?我说:你至少可以用来解微分方程,如下面的例子,就是解决微分方程:
y"+a*y'+b*y=0
代码如下:
[python] view plain copy
#y"+a*y'+b*y=0
from scipy.integrate import odeint
from pylab import *
def deriv(y,t): # 返回值是y和y的导数组成的数组
a = -2.0
b = -0.1
return array([ y[1], a*y[0]+b*y[1] ])
time = linspace(0.0,50.0,1000)
yinit = array([0.0005,0.2]) # 初值
y = odeint(deriv,yinit,time)
figure()
plot(time,y[:,0],label='y') #y[:,0]即返回值的第一列,是y的值。label是为了显示legend用的。
plot(time,y[:,1],label="y'") #y[:,1]即返回值的第二列,是y’的值
xlabel('t')
ylabel('y')
legend()
show()
输出结果如下: