发布网友 发布时间:2022-04-21 17:48
共1个回答
热心网友 时间:2022-07-10 20:31
量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观体材料的物理化学性质,在非线形光学、磁介质、催化、医药及功能材料等方面具有极为广阔的应用前景,同时将对生命科学和信息技术的持续发展以及物质领域的基础研究发生深刻的影响。 很多现代发光材料和器件都由半导体量子结构所构成,材料形成的量子点尺寸都与过去常用的染料分子的尺寸接近,因而象荧光染料一样对生物医学研究有很大用途。从生物体系的发光标记物的差别上讲,量子点由于量子力学的奇妙规则而具有显著的尺寸效应,基本上高于特定域值的光都可吸收,而一个有机染料分子只有在吸收合适能量的光子后才能从基态升到较高的激发态,所用的光必须是精确的波长或颜色,这明显与半导体体相材料不同,而量子点要吸收所有高于其带隙能量的光子,但所发射的光波长(即颜色)又非常具有尺寸依赖性。所以,单一种类的纳米半导体材料就能够按尺寸变化产生一个发光波长不同的、颜色分明的标记物家族,这是染料分子根本无法实现的。
与传统的染料分子相比,量子点确实具有多种优势。无机微晶能够承受多次的激发和光发射,而有机分子却会分解.持久的稳定性可以让研究人员更长时间地观测细胞和组织,并毫无困难地进行界面修饰连接”。量子点最大的好处是有丰富的颜色。生物体系的复杂性经常需要同时观察几种组分,如果用染料分子染色,则需要不同波长的光来激发,而量子点则不存在这个问题,使用不同大小(进而不同色彩)的纳米晶体来标记不同的生物分子。使用单一光源就可以使不同的颗粒能够被即时监控。量子点特殊的光学性质使得它在生物化学、分子生物学、细胞生物学、基因组学、蛋白质组学、药物筛选、生物大分子相互作用等研究中有极大的应用前景。 半导体量子点的生长和性质成为当今研究的热点,目前最常用的制备量子点的方法是自组织生长方式。量子点中低的态密度和能级的尖锐化,导致了量子点结构对其中的载流子产生三维量子*效应,从而使其电学性能和光学性能发生变化,而且量子点在正入射情况下能发生明显的带内跃迁。这些性质使得半导体量子点在单电子器件、存贮器以及各种光电器件等方面具有极为广阔的应用前景。
基于库仑阻塞效应和量子尺寸效应制成的半导体单电子器件由于具有小尺寸,低消耗而日益受到人们的关注。 “半导体量子点材料及量子点激光器”是半导体技术领域中的一个前沿性课题。这项工作获得了突破性进展,于2000年4月19日通过中国科学院科技成果鉴定。半导体低维结构材料是一种人工改性的新型半导体低维材料,基于它的量子尺寸效应、量子隧穿和库仑阻塞以及非线性光学效应等是新一代固态量子器件的基础,在未来的纳米电子学、光电子学和新一代超大规模集成电路等方面有着极其重要的应用前景。采用应变自组装方法直接生长量子点材料,可将量子点的横向尺寸缩小到几十纳米之内,接近纵向尺寸,并可获得无损伤、无位借的量子点,现已成为量子点材料制备的重要手段之一;其不足之处是量子点的均匀性不易控制。 以量子点结构为有源区的量子点激光器理论上具有更低的阈值电流密度、更高的光增益、更高的特征温度和更宽的调制带宽等优点,将使半导体激光器的性能有一个大的飞跃,对未来半导体激光器市场的发展方向影响巨大。近些年,欧洲、美国、日本等国家都开展了应变自组装量子点材料和量子点激光器的研究,取得了很大进展。
除了采用量子点材料研制边发射、面发射激光器外,在其他的光电子器件上量子点也得到了广泛的应用。