经典数据降维算法(含代码)
发布网友
发布时间:2024-09-28 07:13
我来回答
共1个回答
热心网友
时间:2024-10-02 15:06
进行数据降维的原因是减少数据维度,降低计算成本,提高机器学习模型的效率。高维数据会导致维数灾难,即样本数增长速度远小于特征数,使得学习过程复杂度和计算资源需求急剧增加。数据降维能有效提取数据的主要特征,降低数据复杂度,帮助模型更好地处理和学习。应用领域包括文本处理、人脸识别、图片识别和自然语言处理。
数据降维的基本原理是通过删减数据中的冗余、无效信息和重复表达内容,使数据更加紧凑。例如,去除图像中无用的零值信息,或对称图形中重复的信息。常用的数据降维技术分为线性和非线性两类。线性降维如PCA、LDA,非线性降维包括基于核函数的KPCA、基于特征值的ISOMAP等。
PCA(主成分分析)是基础的无监督降维方法,通过找到数据变化最大的方向,将数据投影到低维空间。PCA的目标是最大化投影数据的方差或最小化重构误差。通过计算协方差矩阵,找到最佳的投影空间和协方差矩阵等参数。实现PCA的代码可以进行快速降维,但其缺点是对高阶相关性的效果较差,且假设数据主特征分布在正交方向上。
KPCA(核PCA)结合了PCA和核技术,使用核函数映射非线性数据到高维空间后进行PCA降维。这可以解决非线性数据映射问题,通过在高维空间下应用标准PCA实现降维。
LDA(线性判别分析)是一种特征抽取技术,旨在最大化类间差异和最小化类内差异,通过投影将数据分类任务简化。LDA可以提高数据分析效率,降低过拟合风险。
MDS(多维标度分析)通过直观的空间图表示研究对象的感知和偏好,计算任意两个样本点之间的距离,保持投影到低维空间后的相对距离,实现降维。
Isomap(等度量映射)改进了MDS算法,通过邻域图和计算近邻点之间的距离进行降维,更好地处理非线性结构数据集。
LLE(局部线性嵌入)是一种非线性降维算法,核心思想是通过局部线性组合重构数据点,保持高维数据在低维空间中的局部线性关系,特别适用于流形降维。
t-SNE(t分布随机邻域嵌入)是一种非线性降维算法,用于高维数据的可视化,重建数据在低维空间的趋势,适用于可视化高维数据。
LE(拉普拉斯特征映射)和LPP(局部保留投影)都是基于局部关系的降维方法,通过保持邻居结构信息构造投影映射。
以上方法各有特点和适用场景,Heucoder整理了这些经典降维算法的实现和代码,提供了一个实用的资源库。