为什么矩阵可以用特征值来求逆矩阵
发布网友
发布时间:2024-08-19 14:27
我来回答
共1个回答
热心网友
时间:2024-08-28 00:06
这是由特征向量的定义决定的。以三阶矩阵为例:
设A为三阶矩阵,它的三个特征值为m1,m2,m3,其对应的线性无关的特征向量为a1,a2,a3,则Aai=miai(i=1,2,3),所以A(a1,a2,a3)=(m1a1,m2a2,m3a3)=(a1,a2,a3)diag{m1,m2,m3}
令P=(a1,a2,a3),B=diag{m1,m2,m3},则AP=PB,由a1,a2,a3线性无关可知P可逆,从而P^(-1)AP=B