发布网友 发布时间:2024-08-13 10:10
共1个回答
热心网友 时间:2024-08-18 18:22
f'(x)=O时的点x一定是驻点。
函数的导数为0的点称为函数的驻点,驻点可以划分函数的单调区间,所以f'(x)=O时的点x一定是驻点。
在微积分,驻点(Stationary Point)又称为平稳点、稳定点或临界点(Critical Point)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。
扩展资料函数的平稳点的术语可能会与函数图的给定投影的临界点相混淆。
“临界点”更为通用:功能的平稳点对应于平行于x轴的投影的图形的临界点。另一方面,平行于y轴的投影图的关键点是导数不被定义的点(更准确地趋向于无穷大)。因此,有些作者将这些预测的关键点称为“关键点”。
拐点是导数符号发生变化的点。拐点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;然而并不是所有的固定点都是拐点。如果函数是两次可微分的,则不转动点的固定点是水平拐点。