发布网友 发布时间:2024-09-29 07:47
共1个回答
热心网友 时间:2024-12-01 13:29
极限中的抓大头原则公式介绍如下:
极限抓大头需要满足的条件是x代入后,可以得到一个具体的数字;x→∞时,一般采用“抓大头”准则。注意同样条件下当x→0时,就要考虑用洛比达法则或等价无穷小代换。
极限“抓大头”就是分子分母都趋向无穷时,看分子分母最高次项的关系,和其他的没关系;如果同次,只要系数相除就得极限值,如果不同,上面得次数高不存在,下面的高极限为0。
简介
极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。
对“变量”特有的概念理解还不十分清楚;对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。这样,人们使用习惯的处理常量数学的传统思想方法,思想僵化,就不能适应‘变量数学’的新发展。
古代的人们习惯用旧概念常量就说明不了这种[“零”与“无限靠近零的非零数值”之间可以人为的微小距离跳跃到相等的相互转化]的科学性结论的辩证关系。
极限的求法有很多种
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的.性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹*定理的方法求极限。