发布网友 发布时间:2024-09-30 07:18
共1个回答
热心网友 时间:2024-10-13 10:49
解:(1)因a+b+c=1,故(1/a)-1=[(a+b+c)/a]-1=(b+c)/a.同理有(1/b)-1=(a+c)/b,(1/c)-1=(a+b)/c.===>m=[(1/a)-1][(1/b)-1][(1/c)-1]=[(b+c)/a][(a+c)/b][(a+b)/c].(2)因a>0,b>0,c>0.由基本不等式可知,a+b≥2√(ab),b+c≥2√(bc),c+a≥2√(ca).三式连乘可得(a+b)(b+c)(c+a)≥8abc.===>[(a+b)/c][(b+c)/a][(c+a)/b]≥8.===>m≥8.等号仅当a=b=c=1/3时取得。