设M=(1/a-1)(1/b-1)(1/c-1),且a+b+c=1(a,b,c属于正实数),则M的取值...
发布网友
发布时间:2024-09-30 05:41
我来回答
共1个回答
热心网友
时间:2024-11-15 02:49
因为a+b+c=1
M=(1/a-1)(1/b-1)(1/c-1)
=(b+c)/a*(a+c)/b*(b+c)/a
=(a+b)(b+c)(c+a)/abc
a+b≥2√ab
b+c≥2√bc
a+c≥2√ac
上面三式相乘,得
(a+b)(b+c)(a+c)≥8abc
(b+c)(a+c)(b+a)/abc≥8
(1/a-1)(1/b-1)(1/c-1)≥8
选D