发布网友
发布时间:17小时前
共0个回答
1/sn=(1+2s(n-1))/s(n-1)1/sn=1/s(n-1)+2 1/sn-1/s(n-1)=2所以数列{1/sn}是等差数列。
...n大于等于2时。其前n项和Sn满足Sn^2=an(Sn-1/2).求证:数列{1/Sn}...由Sn^2=an(Sn-1/2),两边同时除以Sn,拆开括号,得到Sn=an-an/2Sn,移项,an-Sn=an/2Sn,两边同时除以an,乘以2,得到2(an-Sn)/an=1/Sn,那么1/(Sn-1)=2[(an-1)-(Sn-1)]/(an-1),第一个减第二个,得到1/Sn-1/(Sn-1)=2{an(Sn-1)-(an-1)Sn}/an(an-1),将Sn=(...
已知数列an中,a1=1,当n≥2时,其前n项和Sn满足Sn^2=an(Sn-1/2)2/S(n-1)-2/Sn=1 所以1/Sn-1/S(n-1)=-1/2 又S1=a1=3 所以{1/Sn}是首项为1/3,公差为-1/2的等差数列 所以1/Sn=-n/2+5/6 所以Sn=6/(5-3n)S(n-1)=6/(8-3n)因为2an=SnS(n-1)所以an=18/[(5-3n)(8-3n)]
在数列an中a1=1,当n大于等于2时,其前n项Sn满足Sn^2=an(Sn-1/2...1.已知:数列an中a1=1,当n≥2时,其前n项和满足sn²=an[sn-(1/2)];求:an表达式。解:代入an=sn-s(n-1)到sn²=an[sn-(1/2)],化简得(1/sn)-[1/s(n-1)]=2,而1/s1=1/a1=1,则1/sn是以1为首项,公差为2的等差数列,则1/sn=1+(n-1)×2=2n-1,则s...
已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn²=an(Sn-1/2)1/S(n)-1/S(n-1)=2,n≥2 可见{1/S(n)}是以1/S(1)=1为首项、2为公差的等差数列,即1/S(n)=2n-1 所以S(n)=1/(2n-1)【所以a(n)=S(n)-S(n-1)=1/(2n-1)-1/(2n-3)=﹣2/[(2n-1)(2n-3)]】(2)b(n)=S(n)/(2n+1)=1/[2n-1)(2n+1)]=(1/2)[1...
在数列{an}中,a1=1,当n>=2,时,其前n项和Sn,满足Sn^2=a(Sn-1/2...{1/Sn}是以 1/S1=1/a1=1为首项,d=2的等差数列 1/Sn=1/S1+(n-1)d bn=2n-1 2.1/Sn=2n-1 Sn=1/(2n-1)Sn-1=1/(2n-3)an=Sn-Sn-1=1/(2n-1)-1/(2n-3)=-2/(2n-1)(2n-3)k+3an>=0 -2/(4n^2-8n+3)=-2/[(4n^2-8n+4)-1]=-2/[4(n-1)^2-1]n=...
已知数列an中,a1等于1,当n大于等于2,其前n项和Sn满足Sn的平方等于an乘以...1/Sn-1/Sn-1=2,为定值。1/S1=1/a1=1/1=1 数列{1/Sn}是以1为首项,2为公差的等差数列。1/Sn=1+2(n-1)=2n-1 Sn=1/(2n-1)Sn-1=1/[2(n-1)-1]=1/(2n-3)an=Sn-Sn-1=1/(2n-1)-1/(2n-3)n=1时,a1=1/(2-1)-1/(2-3)=1+1=2,与已知不符。综上,得...
已知数列an中,a1=1,当n≥2时,其前n项和Sn满足Sn^2=an(Sn-1) 求ans1=a1=1 n>=2则Sn^2=an(Sn-1)=(Sn-S(n-1))(Sn-1)即化简得 S(n-1)-Sn=Sn*S(n-1)两边同时除以Sn*S(n-1)则1/Sn-1/S(n-1)=1 则{1/Sn}是首项为1/S1=1,公差为1的等差数列 故1/Sn=1+n-1=n 则Sn=1/n
数列(an)中,a1=1,当n≥2时,其前n项的和Sn满足Sn平方=an(Sn-1).Sn-1/2)化简得0=-SnS(n-1)-(1/2)Sn+(1/2)S(n-1)。即1/Sn-1/S(n-1)=2 所以1/Sn是以2为公差的等差数列。首项1/S1=1/A1=1 所以1/Sn=2n-1 Sn=1/(2n-1)1/Sn=(2n-1) (n≥2)当n=1时 1/S1=1/a1=1 1/S2=2*2-1=3 3-1=2=d 所以数列1/Sn为等差数列 ...
数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-1).(1)求证:数...解(Ⅰ)∵Sn2=an(Sn-1)∴Sn2=(Sn-Sn-1)(Sn-1)(n≥2)∴SnSn-1=Sn-1-Sn,即1Sn?1Sn?1=1,∴{1Sn}是1为首项,1为公差的等差数列.(Ⅱ)由(Ⅰ)知Sn=1n,∴bn=log2n+2n,∴Tn=log2(31×42×53×64×…×n+2n)=log2(n+1)(n+2)2≥6,∴(n+2)(n+...