发布网友 发布时间:18小时前
共0个回答
解:(1)∵f′(x)=ex-2ax,∴f′(0)=1 所以f(x)在点P(0,1)处的切线方程为y-f(0)=f′(0)(x-0),即y=x+1.…(4分)(2)由题意f′(x)=ex-2ax≥0恒成立 x>0时2a≤exx,令g(x)=exx,则g′(x)=ex(x-1)x2,由g′(x)=0得x=1,x>1时g...
...ax2(a∈R).(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x...∴函数f(x)在点P(0,1)处的切线方程是y=x+1;(2)函数f(x)为R上的单调递增函数即导数f′(x)=ex-2ax≥0恒成立,画出曲线y=ex和直线y=2ax,即要求曲线恒在直线的上方.设直线与曲线相切时的切点为(m,n),
设函数f(x)=ex-ax,x∈R.(Ⅰ)当a=2时,求曲线f(x)在点(0,f...解:(Ⅰ)当a=2时,f(x)=ex-2x,f(0)=1,f′(x)=ex-2,即有f(x)在点(0,f(0))处的切线斜率为f′(0)=e0-2=-1,即有f(x)在点(0,f(0))处的切线方程为y-1=-(x-0),即为x+y-1=0;(Ⅱ)证明:f′(x)=ex-2,令f′(x)=0,解得x=ln2,...
已知函数f(x)=ex-x(1)求f(x)在点(0,1)处的切线方程;(2)若F(x)=f(x...(1)由f′(x)=ex-1,得f′(0)=0,又f(0)=1,故切线方程为:y-1=f′(0)(x-0),即y-1=0.(2)当F′(x)=ex-2ax-1在[0,2]上是增函数时,有F″(x)=ex-2a≥0在[0,2]上恒成立,即a≤ex2在[0,2]上恒成立,∴a≤12.当F′(x)=ex-2ax-1在[0,2...
已知函数f(x)=ex+ax-2(1)若a=-1,求函数f(x)在区间[-1,1]的最小值;(2...0)=-1.∴函数f(x)在区间[-1,1]的最小值是-1.(2)f′(x)=ex+a;∴①当a≥-1时,∵x>0,∴ex>1,∴ex+a>0;∴f(x)在(0,+∞)上单调递增;②当a<-1时,0<x<ln(-a)时,f′(x)<0,∴函数f(x)在(0,ln(-a))上单调递减;x>ln(...
已知函数f(x)=ex+ax2-ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切 ...f′(x)=ex-e令f′(x)=ex-e<0,可得x<1;令f′(x)>0,可得x>1;∴函数f(x)的单调减区间为(-∞,1),单调增区间为(1,+∞)(Ⅱ)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0)+f(x0)令g(x)=f(x)-f′(...
已知函数f(x)=ex?(ax2-2x-2),a∈R且a≠0;若曲线y=f(x)在点P(1,f(1...f′(x)=(ex)′?(ax2-2x-2)+ex?(ax2-2x-2)′=ex?(ax2-2x-2)+ex?(2ax-2)=a?ex?(x?2a)(x+2).∵曲线y=f(x)在点P(1,f(1))处的切线垂直于y轴,由导数的几何意义得f′(1)=0,∴a=2.∴实数a的值为:2.
设f(x)=ex1+ax2,其中a为正实数.(1)求f(x)在x=0处的切线方程...解答:解:(1)∵f(x)= ex 1+ax2 ,∴f′(x)=ex•1+ax2-2ax (1+ax2)2 ,∴f′(0)=1,∵f(0)=1,∴f(x)在x=0处的切线方程为y=x+1;(2)∵f(x)为R上的单调函数,∴f′(x)在R上不变号,∴a>0且ax2-2ax+1≥0在R上恒成立,∴△=4a2-4a≤0,∴0<a≤1...
已知函数f(x)=ex,g(x)=lnx(1)若曲线h(x)=f(x)+ax2-ex(a∈R)在点(1...x)=f(x)+ax2-ex=ex+ax2-ex∴h′(x)=ex+2ax-e,又∵曲线h(x)在点(1,h(1))处的切线垂直于y轴∴k=h′(1)=2a,由k=2a=0得a=0,∴h(x)=ex-ex∴h′(x)=ex-e,令h′(x)=ex-e>0得x>1,令h′(x)=ex-e<0得x<1,∴故h(x)的增区间为(1...
设函数f(x)=ex-ax-2. (1)求f(x)的单调区间; (2...解析 (1)f(x)的定义域为(-∞,+∞),f′(x)=ex-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0,所以,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)由于a...