一个函数如何对x和y都求导
发布网友
发布时间:2024-09-25 21:39
我来回答
共1个回答
热心网友
时间:2024-09-27 21:39
x对y的导数:例如:y=e^x通常我们求导数都是y对x的倒数,也就是y',而x对y的倒数其实就是先通过方程式将x用含y的表达式写出来,然后求导,注意变量是y。例如:y=e^x如果求y对x的导数就是y'=e^x,也可以表示为dy/dx=e^x如果求x对y的导数就先由y=e^x得出x=lny,然后求导:x’=1/y,也可表示为dx/dy=1/y=e^(-x)可以发现:x对y求导的结果与y对x求导的结果互为倒数。
扩展资料:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
值得注意的是,导数是一个数,是指函数f(x)在点x0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。
函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。