发布网友 发布时间:2024-09-27 01:57
共1个回答
热心网友 时间:2024-10-05 20:54
对y=sinx求导 y`=cosx 将x=4/Π代入 y`=cos(4/Π) 设切线方程f(x)=cos(4/Π)x+b1 代入点[4/Π,sin(4/Π)] 所以b1=sin(4/Π)-(4/Π)cos(4/Π) 所以切线方程为 f(x)=cos(4/Π)x+sin(4/Π)-(4/Π)cos(4/Π) 设法线方程为g(x)=1/[cos(4/Π)]x+b2 代入点[4/Π,sin(4/Π)] 所以b2=sin(4/Π)-(4/Π)/cos(4/Π) 所以法线方程为g(x)=1/[cos(4/Π)]x+sin(4/Π)-(4/Π)/cos(4/Π) QQ849123250热心网友 时间:2024-10-05 20:53
对y=sinx求导 y`=cosx 将x=4/Π代入 y`=cos(4/Π) 设切线方程f(x)=cos(4/Π)x+b1 代入点[4/Π,sin(4/Π)] 所以b1=sin(4/Π)-(4/Π)cos(4/Π) 所以切线方程为 f(x)=cos(4/Π)x+sin(4/Π)-(4/Π)cos(4/Π) 设法线方程为g(x)=1/[cos(4/Π)]x+b2 代入点[4/Π,sin(4/Π)] 所以b2=sin(4/Π)-(4/Π)/cos(4/Π) 所以法线方程为g(x)=1/[cos(4/Π)]x+sin(4/Π)-(4/Π)/cos(4/Π) QQ849123250